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In this paper, we present a method for learning
ontologies from RDF annotations of Web
resources by systematically generating the most
specific generalization of all the possible sets of
resources. The preliminary step of our method
consists in extracting (partial) resource
descriptions from the whole RDF graph gathering
all the annotations. In order to deal with
algorithmic complexity, we incrementally build
the ontology by gradually increasing the size of
the resource descriptions we consider.

VXW 3�:�5�G24�J�L�:�<DG23
The Semantic Web, expected to be the next step that will
lead the Web to its full potential, will be based on semantic
metadata describing all kinds of Web resources. Resource
Description Framework [RDF ,1999] seems to be the
emerging standard allowing to semantically annotate Web
resources. These annotations are related to ontologies, for
example declared in RDF Schema [RDFS , 2000], as
proposed by W3C, or in RDF-compatible languages like
OIL [Fensel Y)Z�[�\ ., 2000]. Methods for building hierarchies
of classes from RDF annotations will appear to be useful to
classify resources, organize knowledge and finally learn
ontologies.
The building of hierarchical structures has been extensively
studied in machine learning, especially in concept
formation. Most approaches of concept formation are
dedicated to the prediction of unknown features of new
objects [Fischer Y�Z][^\`_ , 1987; Gennari Y�Z7[^\a_ , 1989]. The
clusters of b�cedFca\`[gf  objects are then privileged, the learned
conceptual hierarchy does not comprise all the possible sets
of objects, but only the best ones according to some
heuristic criteria.
For learning ontologies, we adopt a particular approach of
concept formation. An ontology is viewed as a concept
hierarchy, where each concept is defined in extension by a
cluster of resources and in intension by the most specific
common description of these resources. This approach leads
to the systematic generation of all the possible clusters of

objects, as in [Mineau, 1990; Carpineto YQZh[�\ ., 1993;
Bournaud Y)Z=[�\ ., 2000].
Since all RDF annotations are gathered inside a common
RDF graph, the problem which arises is the extraction of a
description for a given resource from the whole RDF graph.
After a brief description of the RDF data model (Section 2)
and of RDF Schema (Section 3), Section 4 presents several
criteria for extracting partial resource descriptions. In order
to deal with the intrinsic complexity of the building of a
generalization hierarchy, we propose an incremental
approach by gradually increasing the size of the descriptions
we consider. The principle of the approach is explained in
Section 5 and more deeply detailed in Section 6.

ikj C�-7OA6lEm4�1B:�1�noG24�-�+
The Resource Description Framework (RDF) is the
emerging Web standard for annotating resources with
semantic metadata [RDF, 1999]. Everything named by a
URI can be considered as a resource and described by
annotations. In addition, anonymous resources provide a
limited way of existential quantification. An RDF
annotation consists of a set of statements, each one
specifying a value of a property of a resource. A statement
is thus a triple (resource, property, value), a value being
either a resource or a literal. The RDF data model is close to
semantic nets. A set of statements is viewed as a directed
labeled graph: a vertex is either a resource or a literal; an arc
between two vertices is labeled by a property. Figure 1
presents an example of an RDF graph describing the Web
page relative to the cat Njal.

p2q;r)s�tTu�vQw
An example of an RDF annotation

This graph expresses that the cat Njal lives in a house
owned by Catherine, the empty box being an anonymous
resource.
RDF is provided with an XML syntax. Figure 2 presents the
XML serialization of the RDF annotation of Figure 1.

Njal Catherine
livesIn ownedBy

House

type

Cat

type



<rdf:Description about=’#Njal’>
<rdf:type resource=’#Cat’ />
<livesIn>

<rdf:Description>
<rdf:type resource=’#House’ />
<ownedBy rdf:resource=’#Catherine’ />

</rdf:Description>
</livesIn>

</rdf:Description>
p2q;r s tTu���w����Nu��
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An RDF annotation is a set of RDF triples. It can thus be
viewed as a graph, which is a subgraph of the complete
RDF graph representing the whole set of annotations on the
Semantic Web.

$ O,-&%�5�-NP)-03�:�1B:U<DG23oG('�)�3�:�GB+.G2R2<.-0P�<D3hOA6lE
* L0C�-0no12P
RDF Schema (RDFS) is a schema specification language
[RDFS, 2000]. It is dedicated to the specification of
schemas representing the ontological knowledge used in
RDF statements: a schema consists of a set of declarations
of classes and properties. Multi-inheritance is allowed for
both classes and properties. A property is declared with a
signature allowing several domains and a single range. The
RDFS metamodel is presented in Figure 3 and is itself
defined as a set of statements by using the core RDFS
properties: f,+�-)b/.ab10�2�3T\`[gb b/45-  and f1+�-�.aZ 6/7�Y  which denote
respectively the subsumption relation between classes and
the instantiation relation between an instance and a class.

p2q r s�t�u�8�w
The RDFS metamodel and an RDFS ontology.

As shown in Figure 3, an ontology embedding domain
specific knowledge is represented by a schema defined by
refining the core RDFS. Domain specific classes are
declared as instances of the “Class” resource, and domain
specific properties as instances of the “Property” resource.

The “subclassOf” and “subPropertyOf” properties enable to
define class hierarchies and property hierarchies.
The resources appearing in an RDF annotation are then
typed by the classes declared in the RDF schema the
annotation is relative to; the properties between the
resources are those declared in the RDF schema.

9;: /�:Q5�12L�:U<D3�R�50-0P)G2J 5�L=- 4�-=P^L 5�<<%�:�<.G23�P
Regarding the RDF model, the knowledge base representing
the resource annotations consists of a single graph G. There
is no difference between stating a resource description in
one annotation and stating it in several pieces in separate
annotations: “there is no distinction between the statements
made in a single sentence and the statements made in
separate sentences” [RDF, 1999]. The RDF model does not
handle the delimitation of the subgraph of G describing a
resource. We thus propose different criteria for extracting a
description of a resource R from G.= ��>�?"�au�� uA@�u�CBQtTq�?�� qD���

: We define the complete description
of a resource R as follows. A resource is completely
described by the subgraph of G containing all the resources
reachable from R through properties. Formally, the
complete description of R is the largest connected subgraph
of G containing R; it is inductively defined as the join of the
complete descriptions of the resources adjacent to R in G.
Such a complete description may be very large; potentially
it may be the graph G representing the whole knowledge
base. This is why we define ways of extracting partial
descriptions of a resource R from G.E�qauFBTu����HG(�"��IJ�auK@ r^u

: We define the piece of knowledge
relative to a resource R as the largest connected subgraph of
G whose all internal nodes excepted R are anonymous
resources. External nodes are either identified resources, or
literals or anonymous resources connected to the only
resources belonging to the piece. u�CB^t�q�?�� q����L�����`u���r��C�M�

: We define the description of
length n of a resource R as the largest connected subgraph
of G containing all possible paths of length smaller or equal
to n, starting from or ending to R. The description Dn(R) of
length n of a resource R is inductively obtained by joining
Dn-1(R) with the descriptions D1 of length 1 of the resources
which are external nodes of Dn-1(R).EN��tO� qP�Q�J@0u�<B t�q�?�� q����

: We define a partial description of a
resource R as either the piece of knowledge relative to R or
a description of length n of R.
Figure 4 presents the extraction of three possible partial
descriptions of Njal from the whole RDF graph which the
RDF annotation of Figure 1 participates to: the piece of
knowledge relative to Njal, the description of length 1 of
Njal and the description of length 2 of Njal. D1(Njal) is a
subgraph of D2(Njal) which is made of paths of length 1 and
of length 2 starting from or ending to the resource Njal.
Given the whole RDF graph G, by choosing a description
extraction criterion, we can now be provided with a set of
partial descriptions for all the resources that are nodes of G.
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p2q;r)s�t�u���w
Partial RDF descriptions of the resource Njal.
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Our general aim is to learn from the whole RDF graph G
comprising the resources we are interested by, new domain
specific concepts to enrich the ontology from which the
RDF annotations participating to G have been built.
���	��
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Our approach of ontology learning consists of
systematically considering all the concepts covering a set of
resources nodes of G. Each of these concepts may then be
defined in extension as a cluster of resources; its definition
in intension must generalize the descriptions of the
resources belonging to its extension. The definition of
criteria to extract resource descriptions from an RDF graph
G was thus a preliminary step to concept.

Now, given an RDF graph G and a resource description
extraction criterion, let us consider the set of the
descriptions of all the resources nodes of G. We can now
further describe our approach of ontology learning. It
consists in associating to this set of resource descriptions the
hierarchy of the concepts whose extensions correspond to
all the possible resource clusters.

%'&$(�)�*,+�-/.
The concept hierarchy associated to descriptions

of length 1 extracted from the RDF graph of Figure 4.

In this hierarchy, each concept ci is labeled by a pair (exti,
inti), where exti is the extension of ci and inti is the intension
of ci. Inti is the most specific generalization of the
descriptions of the resources belonging to exti. We thus call
this concept hierarchy a generalization hierarchy. The
generalization of a resource description is based on the
subsumptions relations between classes and properties
declared in the RDF schema representing the ontology
which the RDF graph G we consider is relative to. Such a
generalization hierarchy is a lattice: its nodes are partially
ordered by the subsumption relation on their intensions as
well as the inclusion relation on their extensions.
Figure 5 presents the generalization hierarchy built from
descriptions of length 1 of four resources nodes of the RDF
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graph depicted in Figure 4: Njal, Sandwich, Catherine and
the anonymous resource of type ‘House’.
If several concepts share the same intension, a single
concept is added to the generalization hierarchy: the one
with the largest extension. Therefore, if the size of the
generalization hierarchy may theoretically reach 2N concepts
for N resources in the RDF graph G, in practice it is much
lower. For instance, the size of the hierarchy of Figure 5 is 8
concepts instead of 16 (24 ).
������� ��� ���!� �/��� ����� ��"$��� " ��� �

The question which now arises is the choice of a resource
description extraction criterion: starting from an RDF graph,
we must choose from which partial resource descriptions the
concept hierarchy will be built. On the one hand, the larger
the extracted resource descriptions will be, the more
domain-significant the concepts will be. On the other hand,
graph matching and lattice building both have a well-known
intrinsic exponential complexity. As a result, we adopt an
incremental approach for the construction of the
generalization hierarchy.
To be precise, we gradually increase the length of the partial
resource descriptions we consider. We first build a
generalization hierarchy S1 from resource descriptions of
length 1. The concepts of S1 thus have intensions of length
1. Sn is then inductively built from Sn-1 and S1 by
incrementally increasing the maximum length of the
resource descriptions we consider. The description Dn(R) of
length n of a resource R is inductively increased by joining
Dn-1(R) with the descriptions of length 1 of the resources
which are external nodes of Dn-1(R).
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The principle for building S1 is as follows:
1. Extraction of resource descriptions of length 1 from the

whole RDF graph. D1(R) is the set of RDF triples
beginning or ending by R.

2. Iterative generalization of all the possible pairs of
triples. The generalizations of two triples (R1, P1, V1)
and (R2, P2, V2) are the most specific triples (RG, PG,
VG) subsuming them. This is based on the ontological
knowledge represented in the RDF Schema relative to
the RDF annotations we consider. PG is one of the most
specific properties generalizing P1 and P2. If V1 and V2

are classes, then VG is one of the most specific classes
generalizing V1 and V2; else either VG=V1=V2 or VG is
anonymous. We call L1 the set of all generalized triples.

3. Construction of the intensions of length 1 of the S1

nodes. The triples sharing a same extension are grouped
together. An intension may include redundant triples,
one being more general than another. It is cleaned up by

deleting triples subsuming another one. Such an
intension is the most specific description of the node.

4. Building of S1 based on the inclusion relations between
the node extensions. Several nodes may share the same
intension. In this case, the node we preserve
corresponds to the largest extension.

Let us apply this principle on the RDF graph depicted on
Figure 4. The consecutive steps are illustrated in Figure 6.

 ( *, color, black) Njal
 ( *, color, red) Sandwich
 ( *, type, Person) Catherine
 ( *, type, Cat) Njal, Sandwich
 ( *, type, House) Anonymous Resource
 (Sandwich, ownedBy,*) Catherine
 (*, ownedBy, Catherine) Sandwich, Anonym. Res.
… …

  ( *, color, ∅) Njal, Sandwich
  ( *, type, Living Being) Njal, Sandwich, Catherine
  ( *, type, ∅) Catherine, Sandwich, Njal,

Anonymous Resource
… …

Njal, Sandwich ( *, type, Cat)
( *, color, ∅)
( *, type, Living Being)

Njal, Catherine ( *, type, Living Being)
… …
%'&$( )�* +DC�.

Building of E�F depicted in Figure 5.

In the first step, the descriptions of length 1 of all the
resources are extracted from the RDF graph of figure 4. For
each RDF triple (R, P, V), both the triples (*, P,V) and (R,
P, *) are generated; the resources R matching * in ( *, P, V)
and the resources V matching * in (R, P, *) are indexed to
these triples. For instance, the triples (‘Njal’, type, cat) and
(‘Sandwich’, type, cat) both match the triple (*, type, cat):
the resources ‘Njal’ and ‘Sandwich’ are thus indexed by the
triple (*, type, Cat). The result of step 1 is thus an inverted
file where resources are indexed by the triples they are the
extensions of. ‘Njal’ and ‘Sandwich’ belong to the extension
of the intension represented by (*, type, Cat).
In the second step, the triples are matched two by two; for
each pair of triples, the most specific generalization of both
triples is computed, according to the ontological knowledge
expressed in the RDF schema the RDF graph is relative to.
The extension of a generalized triple is the union of the
extensions of the two initial triples it generalizes. For
instance, the triples ( *, color, black) and ( *, color, red) are
generalized into the triple ( *, color, ∅), black and red being
incomparable; ( *, type, Person) and ( *, type, Cat) are
generalized into the triple ( *, type, Living Being), ‘Living
Being’ being the most specific class subsuming ‘Cat’ and
‘Person’. Note that RDFS allows for multi-inheritance on
class and property hierarchies. Therefore two classes or two
properties may have several most specific subsumers; in
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such cases, the generalization of two triples may lead to
several triples.
In the third step, each possible set of resources is considered
as the extension of a concept whose intension is to be found:
for each extension, the common triples the resources are
indexed by are grouped together to build the intension of the
concept. For instance, the two resources ‘Njal’ and
‘Sandwich’ viewed as a concept extension lead to the
construction of the intension of this concept from the set of
triples they are both indexed by: {( *, type, Cat), ( *, color,
∅), ( *, type, Living Being)}. Since the triple ( *, type,
Living Being) subsumes the triple ( *, type, Cat), it is
discarded from the final intension. Finally, a new concept
will be added to the generalization hierarchy, with {'Njal',
'Sandwich'} as extension and {( *, type, Cat), ( *, color, ∅),
( *, type, Living Being)} as intension.
The last step is dedicated to the building of the
generalization hierarchy based on the inclusion relations
between the concept extensions. The concepts sharing their
intensions with concepts whose extensions include their
own ones are discarded: for instance, the concept ({Njal,
Catherine}, {( *, type, Living Being)}) is discarded since
the concept whose extension is the set {Njal, Sandwich,
Catherine} shares the same intension. The generalization
hierarchy depicted in Figure 5 is the final result S1 obtained
from the index file depicted in figure 6.
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 ( *, type, Person) Catherine
 ( *, type, House) Anonymous Resource
 (Sandwich, ownedBy,*) Catherine
 (*, ownedBy, Catherine) Sandwich, Anony. Res.
 (*, livesIn, An. Res.) Njal
 ( *, type, ∅) Catherine, Sandwich, Njal,

Anonymous Resource
… …

(*, ownedBy, Catherine)
(Catherine, type, Person)

Sandwich, Anony. Res.

(*, livesIn, Anony. Res.)
(An. Res., type, House)

Njal

(*, ownedBy, Catherine)
(Catherine, type, ∅)

Sandwich, Anony. Res.

… …

Sandwich, Anony. Res. 1. (*, ownedBy, Catherine)
2. (*, type, ∅)
3. (*, ownedBy, Catherine)
(Catherine, type, Person)
4. (*, ownedBy, Catherine)
(Catherine, type, ∅)

… …
7
839;:�<-=?>A@

 Building of B�C from B=F  depicted in Figure 5.

The principle for building Sn from Sn-1 and S1 is as follows:

1. Iterative construction of Ln by join of all the possible
pairs of one triple of L1 and one triple path of length n-1
of Ln-1. Two triples can be joined if the value in the first
triple is equal to the resource described in the second
triple. A triple path of length n is thus the result of n-1
joins between n triples. This iterative construction of Ln

is equivalent to considering resource descriptions Dn(R)
of length n by joining Dn-1(R) and D1(Ri), with i=1..k,
Ri being the external nodes of Dn-1(R).

2. Construction of the intensions of length n of the Sn

nodes (this step is similar to step 3 of S1 building).
3. Building of Sn based on the inclusion relations between

the node extensions (similar to step 4 of S1 building).

7
8�9,:�<1=4D�@
S2 resulting from the index file of Figure 7.

Figure 7 describes the consecutive steps of the building of
S2 (shown in Figure 8) from S1 (depicted in Figure 5). In the
first step, the triples of S1 are joined one with another (in the
general case, the triples of Sn-1 would be joined with the
ones of S1). For instance, the triple (*, ownedBy, Catherine)
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can be joined with the triple (*, type, Person) since the value
of the former triple is equal to a resource belonging to the
extension of the second one. The join results in a triple path
of length 2 (*, ownedBy, Catherine) (Catherine, type,
Person), whose extension is equal to the extension of the
former triple.
In the second step, each possible set of resources is
considered as the extension of a concept whose intension is
to be found: the common triples the resources of a concept
extension are indexed by are grouped together to build the
intension of the concept. It is thus cleaned up in order to
obtain the most specific description. For instance, the triple
path (*, ownedBy, Catherine) (Catherine, type, ∅) is
discarded from the intension of the extension {Sandwich,
Anonymous Resource}, since it subsumes the triple path (*,
ownedBy, Catherine) (Catherine, type, Person).
The last step is dedicated to the building of the
generalization hierarchy based on the inclusion relations
between the node extensions. Figure 8 presents the
generalization hierarchy S2 built from the generalization
hierarchy S1 depicted in Figure 5. S2 has the same number
of concepts than S1 but five of its concepts have more
complex intensions: the four concepts whose extensions are
reduced to a single resource and whose intensions
correspond to the descriptions of length 2 of these resources,
and the concept of extension {Sandwich, An. Res.}.
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Concept formation or conceptual clustering aim at building
hierarchies to cluster similar objects and classify object
descriptions [Fischer ��������� , 1987]. However only a
particular hierarchy of classes is built, the best according to
a certain criterion. Our approach of concept formation for
ontology learning is slightly different since it aims at� �!� �"�$#%�&� '"()�*�"� �  generating a class for each possible set of
objects. This systematic approach is shared by researches in
formal concept analysis [Wille, 1982] and on knowledge
organization [Mineau �)�+����� , 1990; Bournaud �)�,�&� ., 2000].
Another particularity of our method is the gradual increase
of the size of the resource descriptions to deal with the
intrinsic complexity of description matching and ontology
building. A similar approach of incremental building of a
concept hierarchy is adopted in [Bournaud �-�.�&�"� , 2000]. It is
based on a gradual increase of the � ��/10&(-� 02/3�  4"5  #6���"(87'�9�: .
Object descriptions are :
'<;&�)9 , and consist of conceptual
graphs [Sowa, 1984]. The concept description language is
made more expressive at each step to gradually take into
account the complexity of the object descriptions. Our
method differs since the resource descriptions are not given
in an RDF graph and its incrementallity is based on the
gradual increase of the � '<=)�  and not of the structure of
matching. Finally another approach exploits both natural
language processing and machine learning so as to learn
ontologies from textual corpus analysis [Faure and
Nedellec, 1999; Maedche and Staab, 2000].
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We have presented a method to learn ontologies from RDF
annotations by systematically generating the most specific
generalization of all the possible sets of resources. In order
to deal with the intrinsic exponential complexity of such a
task, we incrementally build the hierarchy by increasing at
each step the maximum size of the RDF resource
descriptions that we extract from the whole RDF graph
gathering all the annotations.
Our algorithm is currently under implementation and will be
tested inside of the European IST Comma Project. In
particular, the so learned ontologies will be used to improve
the efficiency of a query engine over a set of annotations.
Further work will be the development of heuristics and the
choice of domain specific criteria to extract particularly
interesting classes from the learned ontologies.
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