
IFC Coordinate Reference Systems
The following notebook attempts to provide a visual enhancement of the original blog-post written by Dion Moult:
(https://thinkmoult.com/ifc-coordinate-reference-systems-and-revit.html). I've also added some commentary of my own, as I've
found this subject often requires a re-read or two to fully grasp the comments. As you read, feel free to add your own comments!

In addition, users may find the accompanying code useful if they want to learn more about using IfcOpenShell
(http://ifcopenshell.org/).

Special thanks to Jakob Beetz for his great work on the original ifcopenshell-notebooks, which can be found here:
https://github.com/jakob-beetz/ifcopenshell-notebooks

Coordinate systems defined by IfcProject:

Let’s talk about what we want the results to be. According to the IFC specification, IfcProject provides the following information:

the project coordinate system
the coordinate space dimensions
the precision used within the geometric representations
(optionally) the indication of the true north
(optionally) the map conversion between the project coordinate system and the geospatial coordinate reference system.

This information is provided using the RepresentationContexts relationship of the IfcProject. This relationship will contain one or
more IfcGeometricRepresentationContext elements. Each will typically have a CoordinateSpaceDimension of 3, to show a 3D
model, and the Precision attribute shows the model precision.

Let's see how this is defined in the sample file:

{'id': 23,
 'type': 'IfcProject',
 'GlobalId': '0z0$6As99Fg8k_xxjb4gTX',
 'OwnerHistory': None,
 'Name': 'My Project',
 'Description': None,
 'ObjectType': None,
 'LongName': None,
 'Phase': None,
 'RepresentationContexts': (#21=IfcGeometricRepresentationContext($,'Model',3,1.E-05,#17,$),),
 'UnitsInContext': #4=IfcUnitAssignment((#1,#2,#3))}

{'id': 21,
 'type': 'IfcGeometricRepresentationContext',
 'ContextIdentifier': None,
 'ContextType': 'Model',
 'CoordinateSpaceDimension': 3,
 'Precision': 1e-05,
 'WorldCoordinateSystem': #17=IfcAxis2Placement3D(#14,#15,#16),
 'TrueNorth': None}

The WorldCoordinateSystem attribute

If we dive deeper into WorldCoordinateSystem we can find out how the coordinate system for the virtual world is defined:

Usually, this will be set to (0, 0, 0), and represents the origin of the virtual world. In other words, any element in a project usually
inherits the local relative placement of its parent, all the way up to IfcSite, but somewhere, it needs to end in an absolute
coordinate. This WorldCoordinateSystem is the final absolute coordinate that is not relative to anything else. It can therefore be
used to offset everything in your project, should you want to. The IfcMapConversion described below will then be used to convert
our virtual world into the real world.

In []: #First, lets import ifcopenshell and load our IFC file:
import ifcopenshell
file = ifcopenshell.open("models/ifc4 geolocation.ifc") #Thanks Dion for the file ;)

In []: project = file.by_type("IfcProject")[0]

Let's look at the project attributes first:
project.get_info()

Out[]:

In []: # And now specifically the RepresentationContext:
project.RepresentationContexts[0].get_info()

Out[]:

In []: from utils import IfcGraphViz
graph = IfcGraphViz.IfcGraphViz().plot_graph(file, project.RepresentationContexts[0])

https://thinkmoult.com/ifc-coordinate-reference-systems-and-revit.html
http://ifcopenshell.org/
https://github.com/jakob-beetz/ifcopenshell-notebooks

#14
(IfcCartesianPoint)

#17
(IfcAxis2Placement3D)

Location

#15
(IfcDirection)Axis

#16
(IfcDirection)

RefDirection

#21
(IfcGeometricRepresentationContext)

ContextIdentifier : None
ContextType : Model
CoordinateSpaceDimension : 3
Precision : 1e-05
TrueNorth : None

WorldCoordinateSystem

{'id': 17,
 'type': 'IfcAxis2Placement3D',
 'Location': #14=IfcCartesianPoint((0.,0.,0.)),
 'Axis': #15=IfcDirection((0.,0.,1.)),
 'RefDirection': #16=IfcDirection((1.,0.,0.))}

Project Coordinate System

The actual project coordinate system is defined by the HasCoordinateOperation relationship. This holds an IfcMapConversion
element, with all sorts of useful attributes. Let’s go through them below:

SourceCRS: refers back to the IfcGeometricRepresentationContext of the IfcProject to establish the inverse relationship
TargetCRS: refers to the CRS used in the project. This will hold an IfcCoordinateReferenceSystem, or its subtype
IfcProjectedCRS (We'll look at this in more detail below).
Eastings: your IfcProject’s world IfcGeometricRepresentationContext’s 0,0,0 origin will correlate to this number. In Sydney, if
your building is the Sydney Opera House, this’ll be something like 334902.775. If you have specified a MapUnit in the
ProjectedCRS you should use that unit (e.g. meters). Otherwise, you should use the project units (e.g. millimeters).
Northings: same as Eastings, but for the Y axis. For the Sydney Opera House, it’ll be something like 6252274.139.
OrthogonalHeight: continuing our example, this’ll be the AHD of our world origin. Wikipedia says it is 4m in elevation, so I
guess it’ll be something like 4. In this case, we keep the same units as Eastings and Northings, so that we can apply a uniform
scale afterwords.
XAxisAbscissa: specifies the local X axis vector along the easting to determine rotation of the local coordinates. If there is no
rotation, this will be 1.
XAxisOrdinate: specifies the local X axis vector along the northing to determine rotation of the local coordinates. If there is no
rotation, this will be 0.
Scale: Our local (source) coordinate system is usually in millimeters, and the target coordinate system (MGA56) is in meters, so
the scale conversion will be something around 0.001. Keep in mind that it is unlikely to be exactly 0.001. This is because the
scale isn’t primarily about units, it is the scaling factor of the Helmert transformation, which takes into account curvature of the
Earth and local site topograpy. Your surveyor can calculate the actual value.

Let's see what this looks like in our sample file. First, let's find HasCoordinateOperation - This is an inverse attribute of
IfcGeometricRepresentationContext:

HasCoordinateOperation: (#28=IfcMapConversion(#21,#27,334871.85,6252295.02,12.,2.59808,-1.5,1.),)
HasSubContexts: (#22=IfcGeometricRepresentationSubContext('Body','Model',*,*,*,*,#21,$,.MODEL_VIEW.,$),)

We know know that IfcMapConversion has an ID of #28, so let's go ahead and visualize this:

graph

In []: # As we can see below, the coordinates (0,0,0) are used for the origin. See Location.
project.RepresentationContexts[0].WorldCoordinateSystem.get_info()

Out[]:

In []: representation_context = project.RepresentationContexts[0]
for key in dir(representation_context):
 if (
 not key[0].isalpha()
 or key[0] != key[0].upper()
 or key in representation_context.get_info()
 or not getattr(representation_context, key)
):
 continue
 print(f"{key}: ",getattr(representation_context, key))

 # Our inverse attributes are:

In []: IfcGraphViz.IfcGraphViz().plot_graph(file, file.by_id(28))

#14
(IfcCartesianPoint)

#17
(IfcAxis2Placement3D)

Location

#15
(IfcDirection)Axis

#16
(IfcDirection)

RefDirection

#21
(IfcGeometricRepresentationContext)

ContextIdentifier : None
ContextType : Model
CoordinateSpaceDimension : 3
Precision : 1e-05
TrueNorth : None

WorldCoordinateSystem

#28
(IfcMapConversion)

Eastings : 334871.85
Northings : 6252295.02
OrthogonalHeight : 12.0
XAxisAbscissa : 2.59808
XAxisOrdinate : -1.5
Scale : 1.0

SourceCRS

#27
(IfcProjectedCRS)

Name : EPSG:7856
Description :
GeodeticDatum :
VerticalDatum : EPSG:5111
MapProjection :
MapZone :

TargetCRS
#26

(IfcSIUnit)

Dimensions : None
UnitType : LENGTHUNIT
Prefix : None
Name : METRE

MapUnit

This IfcMapConversion and IfcProjectedCRS element of the IfcProject’s IfcGeometricRepresentationContext holds all of the
georeferencing information that we require. These attributes contains all of the parameters required to perform a “Helmert
transformation”, which is a fancy way of saying how to offset, rotate, and scale local project coordinates to a globally positioned
coordinate system. For your surveyor to provide these transformation parameters properly, they will need multiple surveyed points
(a minimum of two), ideally taken at extremes across the site, in both your local coordinates, as well as their equivalents in the
target CRS. They will also need to know your desired building orientation (i.e. project north) to calculate the X axis abcissa and
ordinate, and a nominated false origin to set the Eastings and Northings. The more points that are surveyed, the more accurate
this IfcMapConversion will become.

With all of the information defined above, to convert from local coordinates (X, Y, Z), to map grid coordinates (X', Y', Z'), you can
use these relationships:

After all of this information is recorded, it’s interesting to note that the IfcGeometricRepresentationContext additionally has a
TrueNorth attribute. Assuming the IfcMapConversion is already provided, there is actually no need for a TrueNorth attribute, and
so if it is provided, it is merely duplicate data and there for convenience. IFC readers should not parse it and should not apply the
same rotation twice. The IfcMapConversion takes priority over the TrueNorth attribute.

Coordinate system inheritance

The IfcSite is spatially contained in the IfcProject. However, the spatial containment is not the determining factor for how
coordinates are inherited. Instead, the IfcSite has an ObjectPlacement and a Representation attribute. These are the important
attributes to pay attention to. Let's take a closer look in our sample file:

The ObjectPlacement attribute positions the IfcSite element relative to other objects. We will discuss the different placements
below, but suffice to say that it merely deals with relative offsets of coordinates.

{'id': 83,
 'type': 'IfcSite',
 'GlobalId': '2Naya6vn181f_Nk1xMGM7f',
 'OwnerHistory': #20=IfcOwnerHistory(#18,#19,.READWRITE.,.NOTDEFINED.,1589249386,#18,#19,1589249386),
 'Name': 'My Site',
 'Description': None,
 'ObjectType': None,
 'ObjectPlacement': #82=IfcLocalPlacement($,#17),
 'Representation': None,
 'LongName': None,
 'CompositionType': None,
 'RefLatitude': None,
 'RefLongitude': None,
 'RefElevation': None,
 'LandTitleNumber': None,
 'SiteAddress': None}

The Representation attribute, however, contains an IfcRepresentationContext chosen from the list of contexts defined at the
IfcProject level. It is this particular selection of the IfcRepresentationContext that allows the IfcSite to inherit a particular

In []: site = file.by_type("IfcSite")[0]
site.get_info()

Out[]:

WorldCoordinateSystem and MapConversion attribute defined at the IfcProject level. (Note: In our sample model, IfcSite
doesn't inherit from IfcProject)

I would like to emphasize that the inheritance of coordinate transformation is not done due to spatial containment, but instead due
to the selection of IfcRepresentationContext. This allows different IfcSite elements to have a different IfcRepresentationContext,
and therefore have a different MapConversion. This is useful if you are working on a small town or any geographically large
projects, as different sites will likely require different Helmert transformations. That said, I have heard talk that the
IfcMapConversion could be moved to be defined at the IfcSite level, instead of the IfcProject.

In fact, any IFC product that has a representation can select its own context. Let's look at our sample model:

{'id': 104,
 'type': 'IfcWall',
 'GlobalId': '2NJ_23i9r0G8LCrcGX2cKW',
 'OwnerHistory': #20=IfcOwnerHistory(#18,#19,.READWRITE.,.NOTDEFINED.,1589249386,#18,#19,1589249386),
 'Name': 'Cube',
 'Description': None,
 'ObjectType': None,
 'ObjectPlacement': #95=IfcLocalPlacement(#86,#94),
 'Representation': #103=IfcProductDefinitionShape($,$,(#102)),
 'Tag': None,
 'PredefinedType': 'MOVABLE'}

#14
(IfcCartesianPoint)

#17
(IfcAxis2Placement3D)

Location

Location

Location

#15
(IfcDirection)

Axis
Axis
Axis

#16
(IfcDirection)

RefDirection

RefDirection

RefDirection

#82
(IfcLocalPlacement)

PlacementRelTo : None

RelativePlacement

#84
(IfcLocalPlacement)

RelativePlacement

PlacementRelTo

#86
(IfcLocalPlacement)

RelativePlacement

PlacementRelTo

#95
(IfcLocalPlacement)

PlacementRelTo

#94
(IfcAxis2Placement3D)

RelativePlacement

#91
(IfcCartesianPoint)

Location

#92
(IfcDirection)

Axis

#93
(IfcDirection)

RefDirection

The graph above looks messy, but let's look at it step by step:

1. IfcLocalPlacement-#95 places the IfcWall at a position (0,0,0) relative to IfcLocalPlacement-#86 (0,0,0)
2. IfcLocalPlacement-#86 places the IfcBuildingStorey at a position (0,0,0) relative to IfcLocalPlacement-#84 (0,0,0)
3. IfcLocalPlacement-#84 places the IfcSite with IfcAxis2Placement3D-#17 at position (0,0,0)

The net result? Our beautiful arrow object is placed at (0,0,0)!

In []: # First, let's load some fancy 3d graphics ;) - Thanks again to Jakob Beetz for the code adaptation 😀
from utils.JupyterIFCRenderer import JupyterIFCRenderer
viewer = JupyterIFCRenderer(file, size=(600,500))
viewer

In []: selection = viewer.getSelectedProduct()
selection

In []: # We know the wall has an ID of #104, so let's have a look at its attributes:
wall = file.by_id(104)
representation = wall.Representation
wall.get_info()

Out[]:

In []: # Looking deeper into ObjectPlacement:
IfcGraphViz.IfcGraphViz().plot_graph(file, wall.ObjectPlacement)

Now let's say we change the placement of IfcBuildingStorey, such that IfcAxis2Placement3D-#17 points to a position of (0,0,3.3). If
nothing else changes, we'd expect our object to also be at a position of (0,0,3.3), since it is placed relative to the IfcBuildingStorey.

Coordinate systems defined by IfcSite

In addition to ordinary coordinates, the IfcSite provides RefLatitude, RefLongitude, and RefElevation attributes. As the prefix
“Ref” suggests, this is a latitude and longitutude provided only for reference. It is not sufficient for proper geolocation and if there
is a discrepancy between the IfcMapConversion and the data provided in IfcSite, the IfcMapConversion takes priority.

Note that these RefLatitude and RefLongitude values are recorded in integers that are separated by a full stop to represent
degrees, minutes, seconds, and an optional millionths of a second. West and south locations are negative, and east and north
locations are positive.

In a real project, a project may contain multiple IfcSite objects. Each IfcSite has a Representation, which may include terrain, for
example. For most projects, there is a site boundary, such as a cadastral boundary which denotes the legal plot of land. The
ObjectPlacement of the IfcSite is therefore likely to be a corner of the site boundary which is a point that has been surveyed.

Coordinate systems defined by IfcBuilding

The IfcBuilding contains a Representation of the building. It also contains an IfcObjectPlacement, which is relative to the IfcSite.
This would place your building on your site model. The rotation of this placement also sets out the project north of the building. If
your building has multiple wings, it may also define the individual project norths of each wing.

The IfcBuilding additionally contains two attributes:

ElevationOfRefHeight: as one steps into your building, the finish floor level will be seen as the building’s internal reference
height of +0.00. This attribute will record this “+0.00 reference height” in terms of the absolute values of elevation above sea
level.
ElevationOfTerrain: this is the height in absolute values of elevation above sea level of the terrain immediately surrounding
the perimeter of the building. If the terrain slopes, it is taken to be the lowest point.

Time to go back to our sample model again:

{'id': 85,
 'type': 'IfcBuilding',
 'GlobalId': '3FllR6gD94WuJroKZKsPAi',
 'OwnerHistory': #20=IfcOwnerHistory(#18,#19,.READWRITE.,.NOTDEFINED.,1589249386,#18,#19,1589249386),
 'Name': 'My Building',
 'Description': None,
 'ObjectType': None,
 'ObjectPlacement': #84=IfcLocalPlacement(#82,#17),
 'Representation': None,
 'LongName': None,
 'CompositionType': None,
 'ElevationOfRefHeight': None,
 'ElevationOfTerrain': None,
 'BuildingAddress': None}

Just like the reference point values in IfcSite, these are also duplications of data. It is not explicitly mentioned, but I believe that
should there be a discrepancy, the derived coordinate from the IfcMapConversion takes priority.

The ElevationOfTerrain, apart from being a reference value, also provides a datum to measure the EavesHeight and the Height
(total height) of the building which is recorded in the Qto_BuildingBaseQuantities.

Absolute coordinates

If your object has an IfcObjectPlacement, it usually uses an IfcLocalPlacement which has a PlacementRelTo, thus inheriting the
parent’s placement. If you omit the PlacementRelTo, it does not inherit any more parent coordinates, and ends up being an
absolute coordinate. An absolute coordinate is defined as only relative to the WorldCoordinateSystem of the IfcProject.

A common example for this is the IfcSite element which is the immediate child of the IfcProject. Because its only parent
coordinate is the WorldCoordinateSystem, it is known as an absolute placement.

You can also omit the IfcObjectPlacement altogether, and it will therefore also be treated as an absolute placement which is equal
to the WorldCoordinateSystem of the IfcProject.

Omission of the IfcObjectPlacement is a quick and easy way to say that your IfcBuildingStorey, IfcBuilding, and IfcSite, are all at
the WorldCoordinateSystem. This behaviour has been noted in some software, such as Revit in some circumstances.

In []: building = file.by_type("IfcBuilding")[0]
building.get_info()

Out[]:

Keep in mind that this behaviour is technically possible but it is not endorsed by buildingSMART. For more information, see this ISG
implementation agreement CV-2x3-143 agreement on having the containment tree and the relative placement tree identical for
spatial elements. It is only mentioned out of completeness.

Spatial Composition and coordinates

For the objects that we’ve described so far, they usually use the Spatial Composition concept to relate to one another. Keep in
mind that spatial decomposition and inheritance of coordinates are two separate concepts. Just because something is spatially
contained in a parent container does not mean that it inherits its coordinates.

However, that being said, a convention is endorsed by the specification’s documentation of IfcLocalPlacement to place objects
relative to the same container that it is spatially contained in. I’ve linked the page for you to read the details of the relationships
that are endorsed.

Further Reading

I'd you'd like a simpler introduction to georeferencing, I'd highly recommend reading the documentation here:
https://blenderbim.org/docs/users/georeferencing.html - This particular guide will take you through the steps of georeferencing
your BIM Model using the BlenderBIM Add-on. I've also added a copy of BuildingSmarts' "User-Guide-for-Geo-referencing-in-IFC-
v2.0" to the "helpful docs" folder. Between all these sources, you should be well on your way to setting up your models correctly
😀.

That's it for this notebook. If you have an idea for something else in IFC that you'd like explored in this format, let me know!

Your friendly geek,

Vukas Pajic

https://blenderbim.org/docs/users/georeferencing.html

