
403

A Visual Programming Approach for Validating Linked Building Data

Madhumitha Senthilvel, Jakob Beetz

Design Computation, Faculty of Architecture, RWTH Aachen University, Germany

senthilvel@caad.arch.rwth-aachen.de

Abstract. The upsurge in the development and availability of specialized BIM-based tools have

enabled parsing of information from models into different formats for specific use cases. However,

interoperability issues in IFC result in information loss during the conversion between formats,

standards, and software. While Semantic Web technologies and Linked Data are promising

approaches for representing and linking information spread across sources and formats, the problem

of checking data consistency in the tool-chains remains. Approaches such as SPARQL, mvdXML

are considered either too verbose or unable to handle non-IFC data. Since SHACL was only recently

introduced (2017), visual interfaces for the creation of these rules are not investigated in the AEC

domain. Current implementations of SHACL focus on the generation of validation reports and not

on the creation of SHACL constraints themselves, which requires both Semantic Web knowledge

and domain knowledge. This paper proposes a visual programming interface for creating SHACL

shapes to improve the ease of creation and editing of constraints for non-semantic web experts with

its focus on supporting AEC ontologies and use-cases. To aid that, this paper explores how

constraints can be modularized in SHACL so that they are re-usable across use-cases. The proof of

concept is demonstrated using a linked building data example. This work is an initial step towards

connecting services, wherein, constraints can be created with minimal domain and expert

knowledge, and these constraints facilitate checking the validity of information.

1. Introduction

Building Information Modelling (BIM) is being increasingly accepted as a valuable asset for

the construction industry, in terms of design, planning, collaboration and constraint checking.

With an upsurge in the development and availability of specialized BIM-based tools, it is now

possible to parse information from models into different formats for specific use cases.

However, due to interoperability issues in IFC (Industry Foundation Classes) and the checking

tools that support it, information is lost during the conversion between formats, standards, and

software.

Semantic Web technologies and Linked Data have been identified as promising approaches for

representing and linking information spread across sources and formats (Beetz et al., 2009;

Pauwels et al., 2011). Nonetheless, the problem of checking data consistency remains.

Information still has to be checked for its consistency before being transferred between

applications.

Numerous checking approaches such as XML, SPARQL Protocol and RDF Query Language

(SPARQL), Shape Expressions (SHeX), Object Constraint Language(OCL), Shape Constraint

Language(SHACL), its predecessor SPIN etc. have been employed to validate data. In the AEC

domain, prevalent checking languages/standards are mvdXML and SPARQL. mvdXML is

widely regarded as the go-to for constraint checking (Chipman et al., 2016). However, its

support is limited for IFC based models, with little scope for checking other kinds of data such

as photographs, textual information etc. Furthermore, existing implementations of mvdXML,

SPARQL require both semantic and domain knowledge for modelling constraints; other

modelling approaches such as SHACL, SHeX, OCL do not have implementations yet for AEC

domain. The motivation for this research stems from this gap. This paper proposes and explores

the implementation of an interface for creating constraints in SHACL using open-source API.

The proposed approach focuses on a visual programming interface for creating SHACL shapes

404

to improve the ease of creation and editing of constraints for non-semantic experts, to support

AEC ontologies and use-cases.

To gain an understanding of the existing implementations of checking approaches, the next

section focuses on mvdXML, and BIMSPARQL- the two most prevalent checking mechanisms

in the AEC domain.

2. Existing methods for data validation: approaches, and implementations

The existing approaches for the creation of rules for data validation can be roughly categorized

into proprietary methods and non-proprietary methods. Solibri Model Checker (SMC) is a

widely-used checking tool for applications such as code compliance and clash detection falls

under the Programming based approach (Zhang et al., 2015). While it is based on hard-coding

rules, it is also customizable using the in-built Rule Manager option. However, proprietary

definitions are employed to implement these rules. This reduces the flexibility of the tool for

checking information beyond those envisioned by the tool developers. Such a situation is valid,

especially in a linked data environment where non-IFC data would also have to be validated.

Non‐proprietary model checkers (for example, the mvdXML Checker) overcome vendor-lock-

in.

This section begins with discussing the major non-proprietary implementations for data

validation in AEC: IFCDoc, mvdXML generator for mvdXML and BIMSPARQL for SPARQL

for creating constraints and contrasting them with SHACL. The section aims to give an

overview of implementations of the above approaches and the challenges associated with using

them. These challenges serve as a prologue to understanding the desired features of an interface

for creating constraints for AEC use cases.

2.1 mvdXML

mvdXML is a standard introduced by buildingSMART. It is an electronic format representing

the Model View Definitions (MVD), which themselves represent the information required

during data exchanges. They are a subset of the data schema and can be obtained from

Information Deliver Manual (IDM) and Exchange Requirement (ER). mvdXML

documentation describes its application to IFC data schema only (Chipman et al., 2016).

However, mvdXML has some drawbacks, most of which stem from the complex nature of IFC

itself. For example, it lacks logical formalisms, it only considers IFC schema, and MVD-based

view constructors are not flexible and dynamic (Roxin, 2016). However, implementations for

generating rules and checking them have been developed.

The mvdXML Checker is an implementation developed by Zhang et. al which checks for IFC

data conformation which uses mvdXML rulesets (Zhang et al., 2015). To function it needs: a

mvdXML generator for creating rulesets (IFCDoc), the checker itself which checks the

generated rulesets against given IFC data, and lastly an output viewer which shows the

validation in BCF (Building Collaboration Format). For brevity, IFCDoc will be briefly

discussed. IFCDoc is a tool which creates XML rulesets preloads all the IFC schema releases.

It enables checking the existence of a value/entity/attribute, whether it is present in the correct

entity type and subtype and finally, the accuracy of the attribute value and cardinality of the

said attribute. van Strien gives a comprehensive practical guide to IFCDoc (van Strien, 2015).

However, it requires domain end-user to have knowledge of IFC, mvdXML and IFCDoc

(Weerink, 2016). Currently, IFCDoc tool has limited support since it is not being updated.

Consequently, the mvdXML generator and checker was hence developed by implementing a

405

user-interface for generating the XML rulesets using spreadsheet-based requirement

documentation along with Zhang et. al’s original Checker (Weerink, 2016). This generator

works specifically for a set of specifications and hence is not generic to accommodate other

use-cases.

2.2 SPARQL

SPARQL, which has been implemented for querying and validation in BIMSPARQL, is

regarded as complex and has a high threshold for learning due to its verbosity and flexibility to

define a constraint in multiple ways (Zhang et al., 2018). However, SPARQL’s inherent

flexibility for querying a query in multiple ways demands that the user be well aware of the

syntax of the language. Additionally, current implementations of SPARQL still necessitate the

user to enter queries according to SPARQL syntax, with no masking of the complexities of the

language.

3. SHACL as an alternative data validation language

In section 2, existing implementations for checking information were discussed. As of now,

only IFCDoc exists to generate mvdXML rulesets. While there are limited open-source options

for editors/tools to check AEC information, there exists an even more dire shortage of tools for

generating the rules which are necessary for the checking process. These tools will need to be

able to cater to checking non-IFC data as well. SHACL (Shape Constraint Language), a domain-

agnostic constraint language is still not yet investigated for the AEC domain, partially due to it

being a recent development1. SHACL uses the concept of shapes graphs (rulesets) to define

constraints. When a given input (termed as data graph) is validated against shape graphs, a

validation report is generated containing the classes violating the rules. SHACL is considered

a more general-purpose validation language since it can be used for any information encoded

in the JSON/turtle format.

At present, SHACL has a few implementations such as TopBraid’s SHACL API2, SHACL

Playground3, pySHACL4 and unSHACLed5 etc. The former 4 focus on the validation of data

against the shapes, and not on the creation of the constraints (shapes) themselves. Only

unSHACLed implements a prototype based on an interface for a drag-and-drop option for

creation of SHACL shapes (Meester et al., 2019). This feature of drag and drop helps mask the

complexity of the language and make it easy for all levels of users to utilize the tool.

However, in the AEC domain, the challenge in integrating SHACL in practice with other tools

is that such constraint definition languages require not only expert semantic web knowledge

but also knowledge on assessing the applicability of these rules for AEC ontologies and use-

cases. In a visual programming approach, the syntax of SHACL can be masked by the code

blocks. General purpose visual programming languages have been shown to be more user-

friendly and accessible for non-domain users (Catarci and Santucci, 1995).

The partially pre-programmed editable code-blocks (called nodes) can be connected non-

linearly, hence facilitating the quicker generation of SHACL shapes. In this approach, the code

blocks contain the reusable SHACL shapes (constraints) and the associating data object against

1 Introduced as a standard in 2017.
2 https://github.com/TopQuadrant/shacl
3 https://shacl.org/playground/
4 https://pypi.org/project/pyshacl/
5 http://ecodalo.ilabt.imec.be:8980/#/

406

which it is being validated. Thus the user only has to determine the type of constraints (such as

cardinality, data type, range etc.), and the associated class and property for which these

constraints apply can be determined through the API itself.

4. Implementation Approach

Beyond commercial add-ons such as GrassHopper and Dynamo, there exists numerous open-

source APIs for visual programming such as Node-RED, noflo, PyFlow etc. Libraries such as

Node-Red and noflo are based on JavaScript and can be deployed on the web, but they lack an

interface for visualizing models, including IFC models. PyFlow, on the other hand, can be

deployed as a stand-alone and also in conjunction with an open-source 3D modeller called

FreeCAD. Thus, models can be visualised, information can be extracted from FreeCAD and

used in visual programming. In this work, we have chosen to develop the SHACL module with

FreeCAD and PyFlow so that information can be extracted from FreeCAD for easier modelling

in PyFlow.

4.1 FreeCAD and PyFlow

FreeCAD is an open-source general-purpose modelling tool, with emphasis on parametric

modelling(“FreeCAD: Your own 3D parametric modeller,” n.d.). Originally, it began with

support for mechanical and product design, it now supports Architectural and Civil Engineering

modelling also, by making use of IfcOpenShell. FreeCAD implementation closely resembles

the work proposed by Preidel et.al, in which a Visual Code Compliance Language based on

graphical notation is described (Preidel and Borrmann, 2016).

FreeCAD splits its tools into workbenches, thus making modularized parts, which can be mix-

matched by users for creating models. All of these run on the scripting language Python, giving

end-users flexibility to create their tools and functionalities. Additionally, it also supports 3rd

party tools and libraries for a variety of applications, thus making it possible to run tools inside

tools. One such tool is PyFlow, a general-purpose visual scripting framework for python

(“wonderworks-software/PyFlow,” 2020). It contains editable node packages, which can be

user-defined. A more customized version of the PyFlow is the NodeEditor, which customises

the PyFlow nodes for interaction with files loaded in FreeCAD.

Figure 4.1 shows a general workflow of the SHACL Constraint creator using the above open-

source applications. FreeCAD, the information visualization interface, interacts with PyFlow

(the Visual programming interface). In the current set-up of PyFlow, two existing modules: an

in-built Pyflow module and a FreeCAD NodeEditor module is pre-loaded. The in-built PyFlow

module contains basic nodes for manipulation of any data. The FreeCAD NodeEditor contains

pre-defined nodes for interacting with the FreeCAD environment. In this paper, a new module

called “SHACL Constraint Creator” is added to the above modules in PyFlow. This module

contains SHACL shape nodes which take minimal non-syntactical input from the user, to create

SHACL shapes(rulesets) based on information loaded in the FreeCAD module. As shown in

the figure, all SHACL Shape nodes can take their base input (such as the Class to be checked,

the property to be checked etc.) from the model loaded in FreeCAD.

In this paper, we take a use-case, where an IFC model “HelloWall.ifc” is loaded in FreeCAD.

The wall has a property: label with value “Wall”. The other properties of this wall can be

accessed in PyFlow giving this input to the node FreeCAD_Object2 (refer to Figure 4.2). This

node after execution is shown in Figure 4.3. This node is used as a reference for creating

constraints using the SHACL Constraints Creator module, explained in the next section.

407

Figure 4.1: Implementation approach for SHACL Constraint Creator using FreeCAD and PyFlow

4.2 SHACL Constraints Creator module

A typical SHACL shape graph in .ttl serialization contains three parts: The first part defines the

prefixes, followed by the testing node which defines the targeting class(Entity being checked)

for the checking in the data graph, and finally the property for which the constraint is specified

(property being checked). The SHACL Constraints Creator module is designed in the same

structure.

The composition of a mvdXML ruleset, and a SHACL Shape is shown in Figure 4.4. An

overview of how constraints in SHACL differs from constraints in mvdXML is shown in

Listing 4.1. In this example, we check if in the entity IfcWallCommon there exists a value for

the property Thermal Transmittance. First, the mvdXML-based formulation in IFCDoc tool is

shown along with definition of the components of the file/s (Chipman et al., 2016). Below this,

for the same example, the formulation in SHACL is shown.

Concept

Templates->

Concepts->

<...> (excluded, refer to (Chipman et al., 2016)page 43 for

details)

<Concept uuid="e9941408-82a6-4c00-a397-11087e6c5d1f" name="load

 bearing external walls required to have property

'ThermalTransmittance'">

 <Definitions>

 <Definition>

 <Body lang="de"><![CDATA[For all load bearing

external walls

 the property 'ThermalTransmittance' shall be

applied]]></Body>

 </Definition>

 </Definitions>

 <Template ref="5c252c86-5bff-4372-9a27-b794069f9fbb"/>

 <Requirements>

 <Requirement applicability="export" exchangeRequirement=

 "ae70f764-938b-4cf7-9814-c29a47f56b0e"

requirement="mandatory"/>

408

Target Class->

Target

property-

>

Cardinality->

 </Requirements>

 <TemplateRules operator="or">

 <TemplateRule

Parameters="O_PsetName[Value]='Pset_WallCommon' AND

O_PName[Value]='ThermalTransmittance' AND

 O_PSingleValue[Exists]=TRUE"/>

 <TemplateRule

Parameters="T_PsetName[Value]='Pset_WallCommon' AND

T_PName[Value]='ThermalTransmittance' AND

 T_PSingleValue[Exists]=TRUE"/>

 </TemplateRules>

 </Concept>

Required

Prefixes->

Definition of

Sample shape->

Target Class->

Target

Property->

Cardinality->

@prefix dash:<http://datashapes.org/dash#>.

@prefix sh:<http://www.w3.org/ns/shacl#>.

@prefix ifcowl:<http://www.buildingsmart-

tech.org/ifcOWL/IFC2x3_TC1#>.

@prefix inst:<http://www.linkedbd.net/resource11>.

@prefix express:<http://www.w3id.org/express#>.

@prefix rdf:<http:www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix xsd:<http://www.w3.org/2001/XMLSchema#

@prefix owl:<http://wwww.w3.org/2002/07/owl#>.

ifcowl:TestIfc

 a sh:NodeShape;

 sh:TargetClass ifcowl:IfcWallCommon;

 sh:property [

 sh:path ifcowl:ThermalTransmittance;

 sh:minCount 1;

 sh:datatype xsd:integer

].

Listing 4.1: Comparison of rulesets in mvdXML, from IFCDoc tool(above)and SHACL shape file

(below)

In the above example, ifc:TestIfc is a sample NodeShape in SHACL, which targets the entity

ifcowl:IfcWallCommon, and specifies the property ifcowl:ThermalTransmittance is having a

constraint that it should have at least one value and that value must be an integer (and not be

empty). It has to be noted that the mvdXML file shown in Listing 4.1 is only a snippet, and the

additional files which included the concept templates etc. will also have to be defined and

created before checking.

Similar to the structure of SHACL shape in Listing 4.1, the SHACL Constraint Creator module

in PyFlow contains a Prefix library, a NodeShape library and a Constraints library. While the

Prefix library contains relevant prefixes, which the user can select, the NodeShapeLib library

contains nodes which with input pins for the name of the sample node shape class, the targeted

class for checking, and the property being checked.

409

In the Constraints library, value configurable nodes for checking cardinality, data type,

relationship are defined. Figure 4.3 shows the SHACL Constraint Creator module in PyFlow.

Upon running the workflow shown in Figure 4.3, a SHACL file is generated and saved, the

contents of which are show in in Listing 4.2.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix ifcowl: <http://www.buildingsmart-tech.org/ifcOWL/IFC2x3_TC1#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

ifcowl:TestIfc sh:targetClass ifcowl:WallStandardCase;

sh:property [

sh:path ifcowl:globalId_IfcRoot;

sh:minCount 1;

sh:maxCount 1;

].

Listing 4.2: SHACL ShapeFile generated by the SHACL Constraints Creator

The nodes of NodeShape take input directly from the FreeCAD_Object2 node (refer section

4.1). Additionally, an introspection feature is also implemented, which contains the IFC

schema, which reads the relevant applicable inheritances and associated properties for the

loaded object. Based on the information defined in the FreeCAD_Object2 node, the search

option displays only relevant NodeShapes and applicable property constraints, thus making it

Figure 4.2: FreeCAD with sample file HelloWall.ifc loaded and PyFlow-the open source visual

programming editor

410

easier for the user to construct. All the nodes used in Figure 4.3 are reusable, meaning that they

can be used as inputs for defining other constraints.

The SHACL Constraints Creator module is available on GitHub6.

5. Discussion and Conclusion

Checking conformance of models finds application in situations beyond code compliance. As

previously mentioned, such checking is necessary during file transfer between tools, formats

and standards. The above situations are common-place when working in a collaborative

environment, and hence access to an easy-to-use checking tool is necessary for all stakeholders

involved.

From a stakeholder perspective, who has to create these constraints, the main task is to convert

the text-based requirements into computer-executable rule-sets. The SHACL Constraint

Creator facilitates this through an interface in which the user can drag and drop nodes, and

populate the nodes with information from the text-based requirements. The computer-

executable rulesets are then automatically generated from the information, which can then be

used to validate any file. The FreeCAD environment supports multiple formats, including

images, IFC, CAD/DWG etc., and hence constraints can be created for any type of information,

thus it can be used for also checking the information in a linked data environment. In the

example discussed in section 4.2, the model loaded in FreeCAD is a .ifc file, while the SHACL

constraints are created for ifcOWL, to demonstrate the viability of using SHACL for linked

building data checking. It has to be noted that the current implementation is still under

development.

SHACL also supports querying, with SHACL Advanced Features focusing on SPARQL

queries for extensions. Additionally, efforts are on for incorporating GraphQL with

6 https://github.com/sbalot/SHACLConstraintCreator

Figure 4.3: SHACL Constraint Creator module in PyFlow Environment

411

SHACL(“Publishing RDF/SHACL Graphs as GraphQL,” n.d.; Taelman et al., 2019). Such

querying can also be modularised as nodes (similar to the way constraints are in this paper) so

that end-user directly inputs informal text-information, which is then converted to queries or

used for further validation. FreeCAD also contains modules for connecting to BIMServer7 and

a BCF tool8 for uploading/downloading and updating files in it. Further, if PyFlow can be

wrapped with JavaScript or used with container solutions such as Docker, it can be deployed as

a standalone on the web, thus enabling easier creation of constraints. Future work will be

focusing on incorporating the functionalities of these in SHACL Constraints Creator.

Acknowledgement

This research was funded through a doctoral research grant by the Deutscher Akademischer

Austauschdienst (DAAD).

References

Beetz, J., Leeuwen, J. van, Vries, B. de, (2009). IfcOWL: A case of transforming EXPRESS schemas into

ontologies. AI EDAM 23, pp.89–101. https://doi.org/10.1017/S0890060409000122

Catarci, T., Santucci, G., (1995). Are Visual Query Languages Easier to Use than Traditional Ones? An

Experimental Proof. BCS HCI, pp. 323–338.

Chipman, T., Liebich, T., Weise, M., (2016). mvdxml: Specification of a standardized format to define and

exchange Model View Definitions with Exchange Requirements and Validation Rules. Model Support Group

(MSG) of buildingSMART International Ltd.

FreeCAD: Your own 3D parametric modeler [WWW Document], n.d. URL https://www.freecadweb.org/

(accessed 2.28.20).

Pauwels, P., Van Deursen, D., Verstraeten, R., De Roo, J., De Meyer, R., Van de Walle, R., Van Campenhout, J.,

(2011). A semantic rule checking environment for building performance checking. Automation in Construction

20, pp.506–518. https://doi.org/10.1016/j.autcon.2010.11.017

Preidel, C., Borrmann, A., (2016). Towards code compliance checking on the basis of a visual programming

language. Journal of Information Technology in Construction (ITcon) 21, pp.402–421.

Publishing RDF/SHACL Graphs as GraphQL [WWW Document], n.d. URL

https://www.topquadrant.com/graphql/shacl-graphql.html (accessed 3.8.20).

Roxin, A., (2016). A Semantic Web Approach for defining Building Views.

Taelman, R., Sande, M.V., Verborgh, R., (2019). Bridges between GraphQL and RDF, in: W3C Workshop on

Web Standardization for Graph Data. Presented at the W3C Workshop on Web Standardization for Graph Data,

p. 4.

van Strien, E., (2015). MVD Checker Guide.pdf. Technische Universiteit Eindhoven, Eindhoven, The

Netherlands.

Weerink, J., (2016). Verifying the completeness of Building Information Models. Technische Universiteit

Eindhoven, Eindhoven, The Netherlands.

wonderworks-software/PyFlow [WWW Document], 2020. URL https://github.com/wonderworks-

software/PyFlow (accessed 2.28.20).

Zhang, C., Beetz, J., Weise, M., (2015). Interoperable validation for IFC building models using open standards 20,

pp.24–39.

7 https://www.freecadweb.org/wiki/Arch_BimServer
8 https://github.com/podestplatz/BCF-Plugin-FreeCAD

