Automation in Construction 103 (2019) 80-103

journal homepage: www.elsevier.com/locate/autcon

XUTOMATION IN
CONSTRUCTION

Contents lists available at ScienceDirect

Automation in Construction

An algorithm to facet curved walls in IFC BIM for building energy analysis

Huaquan Ying, Sanghoon Lee”

Check for
updates

The Department of Civil Engineering, The University of Hong Kong, Hong Kong

ARTICLE INFO

Keywords:

Building energy model

Building Information Model (BIM)
Curved wall

Building geometric information
Industry Foundation Class (IFC)

ABSTRACT

The automatic transformation of a Building Information Model (BIM) in Industry Foundation Classes (IFC) to a
building energy model (BEM) demonstrates significant benefits on the improvement of efficiency and accuracy
in a building energy modeling process. However, so far, building objects with curved surfaces in IFC models are
not supported by existing transformation approaches as they only handle polyhedral geometries. This study
presents an algorithm to automatically facet curved walls and convert their geometries into polyhedrons, so that
they can be further processed by existing transformation approaches. In the process of faceting curved walls,
geometric connections between each target wall and adjacent walls are detected and handled to maintain the
connections in the results. Furthermore, the algorithm updates the geometries of relevant building objects, in-
cluding straight walls connected to curved walls, openings (i.e., windows and doors) on curved walls and spaces
enclosed by curved walls, based on the faceted geometries. This removes curved surfaces of these objects on the
one hand, and maintains their geometric relationships on the other. Moreover, slabs with the curved surfaces are
also faceted. This algorithm takes an IFC BIM that pertains to the model view definition Concept Design BIM
2010 as an input. It generates a new IFC BIM, in which all curved walls and relevant building objects are
represented as polyhedral geometries with correct geometric relationships. A prototype application that im-
plements the algorithm was developed to evaluate the performance of the algorithm with a simple building
model and a complex real-world building model. In the results, all the curved walls were faceted, and all relevant
straight walls, openings, spaces and slabs were correctly updated, which indicated that the algorithm worked as
intended.

1. Introduction

1.1. Background

The building sector, which consumes around 35% - 40% of energy

drawings, specifications, and photos), which is laborious and error
prone [5,7]. In addition, building geometric models may not be con-
sistently reproduced as different modelers may have different inter-
pretations of the design documents [7].

A Building Information Model (BIM), which provides a digital re-

use in the world, is one of the major energy consumption sectors [1,2].
In Hong Kong, residential and commercial buildings even account for
64% of total energy end-use from 2004 to 2014 [3]. To achieve am-
bitious reductions in building energy consumptions, building energy
performance (BEP) becomes an increasingly common and important
factor considered in building design and operations. Building energy
modeling, which provides a powerful and computerized method to
predict or assess BEP, is thus widely used to quantitatively justify re-
levant decisions on building design and operations [4,5].

Building geometry is an essential input to a building energy model
(BEM). It generally consumes the largest portion (up to 80%) of the
effort in generating a BEM [6]. In a traditional building energy mod-
eling process, building geometric information is often manually pre-
pared by energy modelers using design documents (e.g., 2D CAD

* Corresponding author.

presentation of building physical and functional characteristics [8],
contains detailed building geometry information that can be utilized to
create a BEM. Studies have shown that automating geometric in-
formation transformation from BIM to BEM provides an effective so-
lution to address those problems found in the traditional building en-
ergy modeling process [4,9-12]. Various transformation approaches
have been developed, and open data schemas such as Industry Foun-
dation Classes (IFC) and Green Building XML (gbXML) have been
commonly used to represent and convey building information
[5,13,14].

IFC is an open data schema for openBIM that aims to promote the
sharing and exchanging of accurate building information throughout
the building life cycle [15]. It provides multiple solid modeling ap-
proaches (e.g., Boundary Representation and swept area solid

E-mail addresses: u3004315@connect.hku.hk (H. Ying), sanghoon.lee@hku.hk (S. Lee).

https://doi.org/10.1016/j.autcon.2019.03.004

Received 9 March 2018; Received in revised form 2 February 2019; Accepted 6 March 2019

0926-5805/ © 2019 Elsevier B.V. All rights reserved.

http://www.sciencedirect.com/science/journal/09265805
https://www.elsevier.com/locate/autcon
https://doi.org/10.1016/j.autcon.2019.03.004
https://doi.org/10.1016/j.autcon.2019.03.004
mailto:u3004315@connect.hku.hk
mailto:sanghoon.lee@hku.hk
https://doi.org/10.1016/j.autcon.2019.03.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2019.03.004&domain=pdf

H. Ying and S. Lee

modeling) to precisely define three-dimensional (3D) building geo-
metry. Furthermore, it offers the concept of space boundary (SB), by
which building geometry can be defined as systems of planar surfaces
that enclose thermal zones [16]. This planar surface-based building
geometry definition is used by most building energy modeling tools
(ibid). Hence, the SB plays a critical role in the process of preparing
geometric inputs to create a BEM from IFC BIM. Various workflows
have been developed and they can be generally distinguished into three
types:

e Exporting an IFC model with SBs from a BIM authoring tool and
subsequently importing that model into BEM. This type of work-
flows relies on the use of building energy modeling tools (e.g.,
Simergy™ [17]) that provide the IFC import function.

Exporting an IFC model with SBs from a BIM authoring tool, and
then extracting and converting the SBs to input formats of building
energy modeling tools. This type of workflows is suitable to the tools
that cannot directly import IFC models. Currently, several format
converters, such as IFC-Modelica [18], IFC-DOE-2 INP [19], and
IFC-EnergyPlus IDF [20,21], have been developed.

Exporting an IFC model with solid geometries from a BIM authoring
tool, enriching it with SBs, and then importing the enriched model
into building energy modeling tools or converting it into specific
input formats of building energy modeling tools [12,22-24]. In this
type of workflows, the initially exported IFC model does not carry
SBs required for building energy modeling. Thus, an additional en-
richment step to generate such geometric data is needed.

The first two types of workflows use BIM authoring tools such as
Revit [25] and ArchiCAD [26] to directly export an IFC model with SBs.
Nevertheless, outputs from the export functions of these tools often
have errors (e.g., incomplete and incorrect exporting), especially when
exporting complex-shape building models, and thus the functions are
still unreliable [22,27,28]. Fig. 1 shows a test of SB generation func-
tions in two commonly used BIM authoring tools. Although the test
building is simple, problems and errors are found from processing
curved geometries in both IFC SB geometric models, as stated in the
figure.

BIM model

|

i,
f

Tr
il

I

I

it g
jlaz!

Automation in Construction 103 (2019) 80-103

By including a step of extracting SBs from IFC solid geometries, the
third type of workflows are more flexible than the other two as they do
not require to use BIM authoring tools that export SBs. Furthermore,
they can avoid the quality issues of SBs from the exporting functions. As
an effort to facilitate the third type of workflows, the Space Boundary
Tool (SBT) [29], developed by Lawrence Berkeley National Laboratory,
aims to transform a building geometric model in IFC to a BEM in the
EnergyPlus IDF format [4]. This tool implements a graph theory-based
algorithm [11] to compute SBs from an input IFC solid model. One of
the main limitations is that it cannot process building objects with
curved surfaces and its outputs do not often fulfil all the requirements
for energy analysis tools [29]. OpenStudio provides an IFC import
utility which utilizes the BIMserver as middleware to transform IFC
solid geometries into SBs in the OpenStudio Model (OSM) format [30].
Similar to the SBT, the utility is limited to handling building objects in
regular shapes (ibid). El-Diraby et al. [22] proposed an online BIM-
based system for collaborative design and socio-technical analytics of
green buildings. This system also includes a module that translates an
IFC building geometry model to an OSM model for OpenStudio. Again,
the underlying SB generation algorithm is still limited to non-curved
building objects. Other SB generation algorithms can be found in
[10,31]. All these algorithms start with an IFC model, in which building
objects are geometrically represented as polyhedrons with flat poly-
gonal faces.

In summary, existing efforts in the third type of workflows find it
challenging to process building objects with curved surfaces. They re-
quire curved building objects to be manually segmented as a collection
of polyhedral partitions in BIM authoring tools. This would add a large
amount of extra remodeling work, especially when a building model is
large and contains many curved objects. More importantly, the manual
process may distort the original geometry definition because of in-
appropriate human decisions on the segmentation methods.

To address this issue, Ladenhauf et al. [9] suggested a pre-proces-
sing step that triangulates solid geometries of building objects so as to
eliminate curved surfaces before extracting SBs. However, triangulating
curved building objects individually may cause incorrect connections
(e.g., geometric clashes) between adjacent building objects, which are
often not allowed by SB generation algorithms (e.g., [10,11], and [31]).

Problems:

® Does not consider building

elements’ thickness
[]

7

Does not distinguish SBs that
have heat transfer and do not
have heat transfer

Openings’ SBs are subtracted
from relevant elements’ SBs

IFC SB geometry model
generated by application A

Problems:

® SBs at the connections
between curved walls and
other walls are incorrect

I SBs on one curved surface do
A not match the SBs on the

other curved surface

IFC SB geometry model

generated by application B

Fig. 1. A test of IFC SBs exporting functions in two BIM authoring tools.

81

H. Ying and S. Lee

Furthermore, triangulation may be not an efficient way to approximate
some common curved shapes (e.g. thin walled cylinders) as it may
produce many tiny triangle patches, which would significantly affect
the running efficiency of building energy modeling tools. Kim and Yu
[32] developed a process to divide curved walls in IFC models into
several straight wall segments for energy analysis. However, this pro-
cess focuses on single curved walls only and lacks the consideration of
their geometrical relationships with other building objects such as other
walls, spaces, and openings. Thus this would also result in incorrect
connections between the divided walls and relevant building objects.

1.2. Research aim

In order to address the challenge of transforming IFC models with
curved building objects into BEMs, this study presents an algorithm that
automatically identifies and facets curved geometries in IFC. The re-
sulting polyhedral geometries can be further processed by existing IFC
BIM-to-BEM transformation tools or approaches following the third
type of workflows. This study particularly focuses on curved walls as
they widely exist in typical buildings and have influential impacts on
building energy performance. Furthermore, the proposed algorithm
takes into account the geometrical relationships between curved walls
and relevant building objects. As shown in Fig. 2, the relevant building
objects include straight walls connected to curved walls, openings in-
cluding doors and windows hosted by curved walls, spaces enclosed by
curved walls, and slabs bearing curved walls. The geometries of these
objects are updated to fit relevant faceted walls. This eliminates their
curved surfaces on the one hand and maintains correct geometrical
relationships between them and faceted walls on the other.

Fig. 3 shows a proposed workflow which integrates the proposed
algorithm with existing IFC BIM - to - BEM transformation methods:
first, an IFC model is prepared and exported from a BIM authoring tool;
second, the proposed algorithm facets curved walls in the IFC model
and update relevant building objects; and finally, the processed IFC
model with polyhedral geometries only is transformed by existing tools
or approaches into a BEM in different formats for different building
energy modeling tools.

2. Research scope

This study focuses on a common shape of curved walls with the
following features:

e Having an unchanged thickness along the wall path;

Space bounded by
the curve'd wall

Straight wall connecting
the curved wall

\
\
~N

Curved Wall @ _

Door on the _ .-
curved wall

[]
‘Window on the
curved wall

[]
Slab bearing the
curved wall

Fig. 2. Curved wall and relevant connected building objects considered by the
proposed algorithm.

82

Automation in Construction 103 (2019) 80-103

e Having a planar footprint bounded by a composite curve consisting
of circular arcs and/or line segments only (i.e., curved surfaces of
curved walls are cylindrical); and

e Being able to be represented by a linear extrusion from a planar
footprint or a result of clipping the linear extrusion by planes. This
means that the study targets not only vertical walls (when the ex-
trusion axis is equal to the Z axis) with a uniform height (when there
is no clipping), but also non-vertical walls with a non-uniform
height. In IFC, curved walls with above-mentioned features are de-
fined by IfcWallStandardCase (if vertical) or IfcWall (if non-vertical)
[33,34]. Their geometries can be defined as a ‘SweptSolid’ re-
presentation by IfcExtrudedAreaSolid (if the height is uniform) or a
‘Clipping’ representation by IfcBooleanClippingResult (if the height
is non-uniform) (ibid).

Similar to curved walls, building objects including straight walls,
openings, spaces, and slabs targeted in this study need to have the
following shape features:

e Having a planar footprint bounded by a composite curve that con-
sists of circular arcs and/or line segments only; and

® Being able to be represented by a linear extrusion from a planar
footprint (i.e., IfcExtrudedAreaSolid) or a result of clipping the
linear extrusion by planes (i.e., IfcBooleanClippingResult).

3. Algorithm requirements
3.1. Input requirements

The IFC specifications provide rich approaches to define building object
geometries. For example, a wall solid geometry can be defined as a swept
solid (e.g., IfcExtrudedAreaSolid), a B-rep (e.g., IfcFacetedBrep), or a result
of a Boolean operation on two other solids (e.g., IfcBooleanClippingResult)
[35]. Even for a specific representation approach, the selection of IFC model
structures and IFC entities to organize the geometric information can be
diverse. All these make it difficult and troublesome to extract building
geometric information from an IFC model and analyze the shape feature of a
building object.

To consider the practicality of the proposed algorithm, an input IFC
model is required to comply with the model view definition (MVD)
called Concept Design BIM 2010 (CDM 2010) [36]. CDM 2010 covers
information exchange requirements for building energy modeling and
has been implemented in several widely used BIM authoring tools such
as Revit [25] and ArchiCAD [26]. In IFC models complying with the
MVD, the geometric data of building objects required by the proposed
algorithm is defined based on unambiguous IFC data structures. This
greatly eases the extraction and processing of the geometric data.
Furthermore, the MVD is based on IFC 2 x 3 TC1 schema. Most existing
IFC BIM-to-BEM transformation tools (e.g., SBT [29]) and energy si-
mulation tools (e.g., Simergy™ [17]) that can directly import IFC
models still work only on IFC2x3 based models.

Several geometry representations (including IfcBoundingBox,
IfcFacetedBrep, IfcFacetedBrepWithVoids, IfcExtrudedAreaSolid, Ifc-
BooleanClippingResult, and IfcMappedItem) and their corresponding
implementation methods are specified in CDM 2010. Among them,
IfcExtrudedAreaSolid and IfcBooleanClippingResult are capable of ac-
curately defining the curved walls targeted in this study and relevant
building objects that have geometric relationships with the curved
walls. The specific IFC data structure in CDM 2010 with the two IFC
entities is explained later in Section 4.2.

It is note-worthy that the MVD concept of SB is mandatorily re-
quired in CDM 2010. This means that when exporting an IFC model in
the mode of CDM 2010 from a BIM authoring tool, the model would
already have SBs. However, as explained earlier, they often carry errors.
Therefore, the proposed algorithm needs to detect and remove these
original SBs.

H. Ying and S. Lee

Algorithms to generate SBs Tools/approaches to directly
based on IFC polyhedral transform

geometries
* Lilisetal. [10]

* Rose & Bazjanac [11]

* Ladenhaufetal. [9]

The proposed !
* El-Diraby et al. [22]

curved wall
faceting algorithm

BIM authoring
tools (e.g. Revit)

1
Export N
IFCBIM | :

Prepare BIM in
BIM tools

Start

IFC files with
solid geometries

van Treeck et al. [31]

Detect and facet
curved elements

LN

IFC files with polyhedral
solid geometries

Automation in Construction 103 (2019) 80-103

Tools/approaches to map IFC SBs

IFC polyhedral to BEM

geometries into BEM * Ifc2Modelica (Andriamamonjy

* Space Boundary Tool [29] etal. [18])

* IFC-OpenStudio e IFC-INP converter (Kim &
transformation approaches Anderson [19])
(El-Diraby et al. [22]; Yu ¢ IFC-IDF converter (Ahn et al.
et al. [23]) [20]; Choi et al. [21])

* BEM tools (e.g., Simergy [17]
and OpenStudio [30])

| 3 v §
[i
- Generate.SB : Convert IFC L
1! geometries ' BIM to BEM o

IFC file with
enriched SBs

Geometric input
of BEM software

Fig. 3. A proposed workflow integrating the curved wall faceting algorithm proposed in this study and existing IFC BIM - to - BEM transformation approaches to

transform curved geometries.

3.2. Output requirements

To adapt results of faceting curved walls to existing IFC BIM-to-BEM
transformation approaches, the output of the algorithm should meet the
following requirements:

First, each curved surface of walls should be faceted as a collection
of planar polygonal surfaces. As discussed earlier, curved geometries in
IFC shall be converted into polyhedral geometries so that they can be
further processed by existing IFC BIM-to-BEM transformation ap-
proaches.

Second, faceted surfaces of one original curved surface along the
wall path shall have a parallel segment that belongs to the faceted
surfaces of another curved surface, as these pairwise surfaces form a
source of thermal SBs. Based on the “other side” information, the
thermal SBs are classified into two types (see Fig. 4): (1) SBs having
heat exchange (Type 2a), the other side of which is a thermal space or
outside environment; and (2) SBs having no heat exchange (Type 2b),
the other side of which is neither a thermal space nor outside en-
vironment [16]. Each internal Type 2a SB has a corresponding Type 2a
SB belonging to the common wall, and they are parallel and geome-
trically symmetric [11], as shown in Fig. 4. Consequently, only faceted
surfaces that satisfy this requirement can be further processed to gen-
erate correct thermal SBs.

Third, the geometry shape of curved walls shall be maintained as
much as possible in the faceting results. This is important to preserve
the geometry-related thermal features of original curved walls and the
original spaces bounded by the curved walls.

Fourth, each curved wall after faceting shall have correct geome-
trical relationships with relevant building objects including connected
walls, contained openings, enclosed spaces, and the slab that bears the
curved wall. This requires the geometries of the relevant building ob-
jects to be updated or faceted to fit with the faceted curved walls. On
the one hand, similar to curved walls, these objects are also essential to
building energy modeling and their geometries need to be transformed.
Therefore, their curved surfaces caused by the geometric connections
with the curved walls need to be faceted as well. On the other hand,
incorrect geometric relationships such as gaps and intersections in

83

Type 2a (external): SB
having heat exchange

Type 2a (internal): SB having
heat exchange (a pair of SBs)

/ 7

* F/ * ’/::’,,,

; ; 7

1 1 o

\% v =
<--—-4->

Space 2
<«~-—-4->
Space 1 r

Type 2b: SB having

Space 3
no heat exchange P

Fig. 4. Two types of thermal SBs.

faceting results would fail downstream IFC BIM-to-BEM transformation
processes.

4. The proposed algorithm
4.1. Overview of the algorithm

As specified in Section 2, the geometries of curved walls and re-
levant building objects (i.e., straight walls, openings, spaces and slabs)
targeted in this study are represented as extruded area solids by If-
cExtrudedAreaSolid or clipped extruded area solids by IfcBoolean-
ClippingResult. In IfcExtrudedAreaSolid, an extruded area solid is de-
fined by extruding a bounded planar surface (i.e., the footprint) along

H. Ying and S. Lee

Automation in Construction 103 (2019) 80-103

Output: IFC

Input: IFC model model with
complying with processed
CDM 2010 results

.| Phase 1: Faceting

]

Phase 2: Updating

curved walls

A

geometries of relevant
building objects

Phase 3: Removing
original SBs

-

Extracting
footprints of walls

Standardizing
footprints and
identifying curved

Updating geometries of
i straight walls connecting |
5 curved walls

Updating geometries of
opening on curved walls

Updating geometries of
spaces enclosed by curved

Updating geometries of
slabs with curved surfaces

Fig. 5. The main phases of the proposed algorithm.

with a linear direction and with a given extrusion length. The curved
edges of the footprint correspond to the curved surfaces of the solid.
Therefore, a curved solid represented by IfcExtrudedAreaSolid or Ifc-
BooleanClippingResult can be faceted by approximating all curved
edges in the footprint boundary into sets of line segments. With this
concept in mind, this study proposes a footprint-based algorithm to
facet curved walls and update all relevant building objects. The algo-
rithm replaces their original footprint boundaries that contain curved
edges with a closed polyline that consists of continuous line segments
only.

The proposed algorithm has three primary phases (see Fig. 5). In the
first phase, curved walls in an IFC model are identified and faceted in
three steps: extracting footprints of walls (Section 4.2), standardizing
footprints and identifying curved walls (Section 4.3), and faceting
curved walls (Section 4.4). In the second phase (Section 4.5), straight
walls with curved surfaces, openings on curved walls and spaces en-
closed by curved walls are detected and their geometries are updated
based on the results from faceting corresponding curved walls. Slabs
with curved surfaces are also identified and faceted. In the third phase
(Section 4.6), the original SBs are removed so the resulting IFC model
can be enriched with new valid SBs by existing IFC BIM-to-BEM
transformation approaches.

4.2. Extracting footprints of walls

The footprints of walls are extracted from their geometry re-
presentations in IFC models following the schema of CDM 2010. As
discussed earlier, walls in this study are defined by IfcWallStandard-
Case or IfcWall and their geometries are represented by Ifc-
ExtrudedAreaSolid or IfcBooleanClippingResult. Fig. 6 shows the IFC
structure and entities used to define the solid geometry of a wall in
CDM 2010.

As shown in Fig. 6, the footprint of a wall is specified by the
SweptArea attribute of IfcExtrudedAreaSolid, which refers to an IfcAr-
bitraryClosedProfileDef instance. There are two methods to define the
footprint: (1) using IfcArbitraryClosedProfileDef with a reference of
IfcPolyline (denoted as IfcArbitraryClosedProfileDef - IfcPolyline),
which defines a footprint as a closed polyline; (2) using IfcArbitrar-
yClosedProfileDef — IfcCompositeCurve, which defines a footprint as a
composite curve that consists of a collection of basic curves joined end-

84

to-end. The basic curve is either a line segment defined by IfcPolyline or
a circular arc by IfcTrimmedCurve. In summary, according to the types
of contained geometric primitives, the footprints are classified into four
representation forms:

e Form 1: a
IfcPolyline);

e Form 2: a collection of continuous line segments (IfcArbitrary-
ClosedProfileDef — IfcCompositeCurve — IfcCompositeCurveSegment
— IfcPolyline);

e Form 3: a collection of circular arcs (IfcArbitraryClosedProfileDef —
IfcCompositeCurve — IfcCompositeCurveSegment — IfcTrimmed-
Curve);

e Form 4: a combination of line segments and circular arcs
(IfcArbitraryClosedProfileDef — IfcCompositeCurve — IfcComposite-
CurveSegment — IfcPolyline/IfcTrimmedCurve).

closed polyline (IfcArbitraryClosedProfileDef -

Therefore, extracting footprints in different representation forms is
essentially based on the interpretation of three types of geometric pri-
mitives defined in IFC:

e A closed polyline or a line segment defined by IfcPolyline: a list of
ordered vertices is extracted from the IfcCartesianPoint instances
referenced by the IfcPolyline instance.

® A circular arc defined by IfcTrimmedCurve: four types of informa-
tion including coordinates of the center point, radius, coordinates of
two trimming points (i.e., two endpoints) and the arc direction (i.e.,
clockwise or count-clockwise from one endpoint to another) are
extracted from the IfcTrimmedCurve instance and its referenced
instances.

4.3. Standardizing footprints and identifying curved walls

This step aims to identify curved walls based on the extracted
footprint representations, which, however, is complicated due to the
multifarious representations of footprints (see Section 4.3.1). To ad-
dress this issue, a footprint standardization process that transforms
these various representations into the “standard” form is introduced.
Then the shape of a wall is inferred from its standard footprint.

H. Ying and S. Lee

Automation in Construction 103 (2019) 80-103

IfcWallStandardCase/IfcWall

+ GloballD IfcProductDefinitionShape
+ OwnerHistory > Name
+ Name Description
Description + Representations >
ObjectType
ObjectPlacement
Representation

IfcExtrudedAreaSolid
+ SweptArea >

+ Position >

+ ExtrudedDirection >
+ Depth

IfcShapeRepresentation
+ ContextOfltems >
Representationldentifier

IfcArbitraryClosedProfileDef
+ ProfileType

ProfileName
+ OuterCurve >

RepresentationType
+ Items >

OR

+ Operator

IfcBooleanClippingResult R

+ FirstOperand >

+ SecondOperand>

IfcHalfSpaceSolid
+ BaseSurface >
p + AgreementFlag

IfcPolyline
+ Points >

IfcCartesianPoint
+ Coordinates >

IfcCompositeCurve
+ Segments >

+ SelfIntersect + Transition
+ SameSense

+ ParentCurve >

IfcCompositeCurveSegement

Method 1: Closed polyline

Method 2: Composite curve

IfcCartesianPoint
+ Coordinates >

IfcPolyline
+ Points >

AND/OR IfcCircle
+ Position >
IfcTrimmedCurve + Radius
+ BasisCurve >
+ Triml >
+ Trim2 >

+ SenseAgreement

. IfcTrimmingSelect]
+ MasterRepresentation

Fig. 6. Instantiation diagram to represent an extruded area solid and a clipped solid of a wall in CDM 2010 [36]. Note: the FirstOperand of IfcBooleanClippingResult
can also refer to another IfcBooleanClippingResult when there is more than one clipping. For clarity, it directly refers to IfcExtrudedAreaSolid.

4.3.1. Multifarious representations of footprints

According to Section 4.2, extracted footprints have four re-
presentation forms. Naturally, walls with footprints containing circular
arc boundaries (i.e., footprints in Form 3 and Form 4) are the candi-
dates of curved walls. In IFC models, however, a circular arc may also
be approximately defined as a collection of line segments (see
Fig. 7(a)). This means even if a footprint is only bounded by a polyline
(i.e., Form 1) or a set of line segments (i.e., Form 2), the wall still could
be curved. Furthermore, one straight edge may also be divided into
several smaller line segments (see Fig. 7(b)), which adds more com-
plexities to interpret the footprint feature. Fig. 8 illustrates the re-
presentative footprints of curved walls and straight walls in different
representation forms: walls in Form 1 & Form 2 can be curved or
straight; walls in Form 3 must be curved as two long edges are circular
arcs; and walls in Form 4 can be curved or straight.

4.3.2. Footprint standardization

The footprint standardization aims to transform the various foot-
print representations into a “standard” form for the downstream pro-
cessing. The standard footprint is defined as a closed boundary that
consists of four connected edges including two long edges and two short
edges. Each edge is defined by a geometric primitive, which is either a
circular arc (i.e., arc edge) or a line segment (i.e., straight edge). Fig. 9

85

shows the standard footprint of a typical curved wall and a typical
straight wall. It is apparent that the footprint in Form 3 where all cir-
cular arc edges are explicitly defined is the standard from; while, as
discussed in Section 4.3.1, footprints in Form 1, Form 2 and Form 4 may
be not and need to be standardized. Geometrically, Form 1 and Form 2
are equivalent as footprints in both forms are essentially composed of
line segments. Hence, they are discussed together hereafter.

The proposed standardization method consists of four steps (see
Fig. 10(a)): temporary footprint construction, corner vertex detection,
reconstruction of temporary footprint edges and standard footprint
construction. Four illustrative examples are shown in Fig. 10(b)—(e).

(1) Temporary footprint construction

The temporary footprint is a closed polyline constructed by using
the endpoints of line segments and/or circular arcs in the extracted
footprint. A footprint in Form 1 can be directly used as the temporary
footprint. For a footprint in Form 2, the endpoints of all line segments
are extracted and stored in order and duplicate points (i.e., endpoints
shared by two adjacent line segments) are removed. For a footprint in
Form 4, the endpoints of all line segments and all circular arcs are
stored to construct a corresponding temporary footprint. Similarly,
duplicate endpoints need to be removed. During the construction all the

H. Ying and S. Lee

#2039=

Automation in Construction 103 (2019) 80-103

N\
/ \
~

3

[FCWALLSTANDARDCASE('1ZACZoxR15BQ14t0EWaFzk', #41, IfcWallStandardCase

'‘Basic Wall:Generic - 400:320377',$,'Basic Wall:Generic -
400:320793,#1878,#2037,'320377");

#2037= IFCPRODUCTDEFINITIONSHAPE
(8,8,(#1886,#2030,#2035));

#2030= IFCSHAPEREPRESENTATION
(#94,'Body','SweptSolid',(#2026));

#2026= IFCEXTRUDEDAREASOLID
(#2024,#2025,#19,4000.);

#2024= IFCARBITRARY CLOSEDPROFILEDEF
(AREA.,$,#2022);

#2022= IFCPOLYLINE
((#1888,#1890,#1892,#1894,#1896,#1898,#1900,#1902,#1
904,41906,41908,41910,41912,41914,£1916,41918,41920,
#1922,#1924 #1926 #1928 #1930,#1932,#1934 #1936,#193
8,#1940,#1942,#1944 #1946 #1948 #1950,#1952,#1954 #1
95641958 #1960,#1962,#1964,#1966,#1968,#1970,41972,
#1974, #1976,#1978,#1980,#1982.#1984,#1986.#1988,#199
0,41992,#1994,#1996,#1998,#2000,42002,42004,42006,42
008,42010,42012,42014,42016 #2018 #2020,#1888));

IfcPolyline

v

IfcProductDefinitionShape

\4

IfcShapeRepresentation

\d

IfcExtrudedAreaSolid

\J

IfcArbitraryClosedProfileDef

/\
|

IfcCompositeCurveSegment

N

IfcPolyline IfcTrimmedCurve

(@) (b)

IfcCompositeCurve

#1687=
IFCWALLSTANDARDCASE('3nVIvGf5X8sBw30OCuwlkZa'#41,'
Basic Wall:Generic - 300mm:316991',$,'Basic Wall:Generic -
300mm:6291',#1614,#1685,'316991");

#1685=
IFCPRODUCTDEFINITIONSHAPE(S,$,(#1619,#1678,#1683));

#1678=
IFCSHAPEREPRESENTATION(#94,' Body','SweptSolid',(#1674));

#1674=
IFCEXTRUDEDAREASOLID(#1672,#1673,#19,4000.);

#1672=
IFCARBITRARYCLOSEDPROFILEDEF(.AREA.,$,#1664);

#1664=
IFCCOMPOSITECURVE((#1628,#1635,#1
642,#1649,#1656,#1663),.F.);

#1628=
IFCCOMPOSITECURVESEGMENT(.CONTIN
UOUS.,.T.#1625); ...

#1625=
IFCTRIMMEDCURVE(#1624,(IFCPARAMETE
RVALUE(152.461463139299)),(IFCPARAMET
ERVALUE(154.600796857367)),.T.,PARAMET
ER.);

#1633= IFCPOLYLINE((#1629 #1631));

#1640= IFCPOLYLINE((#1636,#1638));

#1647= IFCPOLYLINE((#1643,#1645));

Fig. 7. The representations of wall footprints in an IFC model: (a) two circular arc edges of a curved wall are approximated as two set of line segments; (b) one
straight edge of a straight wall is defined as three connected line segments.

.o

Curved wall Straight wall

(a) Form1 & 2

Legend

oo [ine segment

Curved wall

(b) Form 3

vee o ...
[]
]
Curved wall Straight wall
(c) Form 4

S Circular arc

Fig. 8. The representative footprint representations of curved walls and straight walls in different forms.

86

H. Ying and S. Lee

Short edge 1

. Short edge 1

(straight edge) Long edge 1 (straight edge)

(straight edge)

Long edge 1 » Long edge 2 Long edge 2
(arc edge) (arc edge) (straight edge)
Short edge 2 Sho.rt edge 2

(straight edge) (straight edge)

(@ (b)
Legend e e Line segment S Circular arc

Fig. 9. Standard footprint representation form of: (a) a typical curved wall; (b)
a typical straight wall.

original circular arcs are preserved for the subsequent steps.
(2) Corner vertex detection

A corner vertex refers to the common point shared by a long edge
and a short edge of the standard footprint. The standard footprint has
four corner vertices. Once all corner vertices are detected, all the
endpoints in the temporary footprint are clustered into four groups.
Each group contains the points belonging to one edge of the standard
footprint.

A vector-based method is developed to detect corner vertices. First,
for any two adjacent endpoints in the temporary footprint, this method
computes a vector that represents the direction from one point to the

Automation in Construction 103 (2019) 80-103

other. All these direction vectors are stored in order. Second, the angle
between two adjacent direction vectors is calculated. Each angle in-
volves a group of three successive endpoints. The four corner vertices
are included in four groups of points that correspond to the top-four
largest angles. More specifically, the second point in each group is one
of the four corner vertices. This is because if the second point is not a
corner vertex, then the three successive points must belong to a same
edge. In this case, the corresponding angle value would be relatively
small (if the edge is curved) or even zero (if the edge is straight).

Fig. 11 illustrates this method with a curved wall in Form 1.
Fig. 11(a) shows that the footprint is defined as a closed polyline with
68 ordered endpoints. By using the proposed method, the direction
vectors between two adjacent endpoints are constructed (see Fig. 11(b))
and the angles of all the pairs of two adjacent direction vectors are
calculated (see Fig. 11(c)). It is clear that four angle values are much
larger than the others, and the involved groups of endpoints are:
(#1950, #1952, #1954), (#1952, #1954, #1956), (#2018, #2020,
#1888), and (#2020, #1888, #1890). The element in parentheses such
as #1950 denotes an IfcCartesianPoint instance that defines an end-
point. From the results, four corner points (i.e. the second point in each
group) namely #1952, #1954, #2020 and #1888 are recognized. Ac-
cordingly, all endpoints of the polyline are classified into four groups
(see Fig. 11(b)): (#1888, #1890, ..., #1952), (#1952, #1954), (#1954,
#1956, ..., #2020), and (#2020, #1888). Each group corresponds to an
edge of the footprint.

(3) Reconstruction of temporary footprint edges

Based on the four groups of endpoints, four edges of the temporary
footprint are reconstructed as four explicit geometric elements. The
reconstruction operation obeys the following rules:

o If the number of endpoints in a group (Ng) is two, then this group
represents a straight edge, which is defined as a line segment by the
two endpoints.

o If Ng is more than two and angles of direction vectors corresponding

Temporary
Corner vertex
footprint > .
(a) P . detection
construction

> temporary —>]

Reconstruction of Standard footprint

construction

footprint edges

o

(b) W Ii:ﬁ:"’*—o oo

() ¢ 4 1 Ros 1
l‘\/.l
R _/
d x 3 W, .
v ® o o o
(14 p]

t e = I
<« e
(e) ‘ \4 oo
S b
e
Legend & A Line segment
A L]

" Circular arc

I\\:’/‘/f

—
A

hed

W ¢

« Corner vertex

Fig. 10. Standardization of footprints in different representation forms: (a) standardization process; (b) example of a curved wall in Forms 1 & 2; (c) example of a
straight wall in Forms 1 & 2; (d) example of a curved wall in Form 4; (e) example of a straight wall in Form 4.

H. Ying and S. Lee

#2022=IFCPOLYLINE

Automation in Construction 103 (2019) 80-103

((#1888,#1890,#1892,#1894,#1896,#1898,#1900,#1902,#1904,#1906,#1908,#1910,#1912,#1914,#1916,#1918 #
1920,#1922,#1924,#1926,#1928,#1930,#1932,#1934,#1936,#1938,#1940,#1942 #1944,#1946,#1948,#1950,#19
52,#1954,#1956,#1958,#1960,#1962,#1964,#1966,#1968,#1970,#1972,#1974,#1976,#1978,#1980,#1982,#1984
JH#1986,#1988,#1990,#1992,#1994,#1996,#1998,#2000,#2002,#2004,#2006,#2008,#2010,#2012,#2014,#2016,#

2018,#2020,#1888));

(a) Footprint in Form 1 (closed polyline)

#1888 =— #2020

—>
#1952 #1954

(b) Vector construction

140 -

® Angle(Degree)
120 A
100 -

80 -

60 -

40 -

20 -

[e e e e o e
e e e e e e e e e PR
NSO FT XN TROAOOOTROANOOTROXANOO T ROXAYD T N0 OO
DA == A AT T TULUULUOOOEDTXRXRXRNDNODDDOD — —=A D
ST RXAVOTOXANOOTRXAOLOFTXALOSTFTOALOCOS T OAYDS T 0
DA " = = A NN N T T ULOOEEDIXXRRDNDNDD O — — — X
BN S S SRS ST ST S FLa S LSS
XN DD~ A AN ONTTTFTOUOULOOOE TN DDDD — —A
VXX ODOO O OO
ﬁﬁﬁﬁﬁﬁﬁﬁﬁ 2222222222222 2222 aaaaa
EEETEEEEETETETEEEET T TR R EEEE
TETETTTTETETETTETEEETE T LT T T T T T T T T EEEEE

(c) Angles between two adjacent vectors

Fig. 11. Identification of the corner points of a temporary footprint.

to the endpoints in a group (6;) are smaller or equal to a threshold
of 0.5 degree, then this group represents a straight edge, which is
defined as a line segment by the first and the last endpoints;

If Ng is more than two and 6 are larger than 0.5 degree, then this
group represents an arc edge, which is defined as a circular arc. The
circular arc is computed by: taking the first and the last endpoints in
the group as two trimming points; and using the two trimming
points and one other endpoint in the group to compute parameters
including radius, the center point and the arc direction from one
trimming point to the other.

(4) Standard footprint construction

The standardization of footprints in Forms 1 & 2 has been completed
in Step (3), as their temporary footprints are geometrically equivalent
to the standard form (see the examples in Fig. 10(b)—(c)). For footprints
in Form 4, their temporary footprints need to be updated with the
preserved circular arcs that are explicitly defined in original footprints
(see the examples in Fig. 10(d)—(e)). More specifically, the update is to
replace straight edges in the temporary footprints with corresponding
circular arcs in the original footprints.

4.3.3. Curved wall identification

After the footprint of a wall is standardized, the shape feature is
inferred by the following criteria: if two long edges in the standard
footprint are circular arcs, the wall is identified as curved; otherwise,
the wall is straight. The long and the short edges are distinguished by
comparing their lengths. As an edge in the standard footprint is either a
line segment or a circular arc, its length can be easily calculated.

4.4. Faceting curved walls

In this step, the identified curved walls are faceted while fulfilling

88

the three output requirements specified in Section 3.2 (i.e., all
boundary surfaces are planar polygons; meet the requirement of SB
generation; and maintain original curved shape as much as possible).
The basic idea of the algorithm is to replace original footprints of
curved walls with closed polyline-based footprints, which is achieved
by four steps: (1) detecting connections (see Section 4.4.1), (2) dividing
arc edges (see Section 4.4.2), (3) segmenting arc edges (see Section
4.4.3), and (4) updating the footprint (see Section 4.4.4). An illustrative
example is shown in Fig. 12.

4.4.1. Detecting connections

From the view of 2D footprints, connections between a curved wall
and other walls are classified into two types (see Fig. 12(a)): (1) Type 1,
which refers to connections between a long edge of the curved wall and
short edges of other walls; (2) Type 2, which refers to a connection
between a short edge of the curved wall and a long edge of another
wall. Only Type 1 connections are detected as Type 2 connections do
not affect the curved wall faceting process.

In IFC, the connectivity relationship between two walls can be de-
fined by IfcRelConnectsPathElements. However, CDM 2010 does not
mandatorily specify the requirement of connectivity information, which
means that this information may be missing in an IFC model that per-
tains to this MVD. Therefore, the algorithm includes steps to detect
Type 1 connections of a curved wall by a 2D geometry operation, as
follows. First, walls that need to be checked for computing Type 1
connections are narrowed down by filtering out walls that do not have
arc short edges in their standard footprints. Second, for each candidate
wall, a circular arc - circular arc overlap test is performed on its short
arc edges and the curved wall's long arc edges. The test succeeds if the
following three conditions are satisfied: (1) two circular arcs (C1, C2)
share a common center (e.g., Distance(C1centers C2center) = 0.01 mm); (2)
two circular arcs have the same radius (e.g., |Clradius — C2radius| < 1
mm); and (3) two circular arcs have an intersection. The first two

H. Ying and S. Lee

(a) Detecting connections

Line segment 1 // Arc2

(Short edge 1) "/
(Type 2 connection) / = (Long edge 2)

m | Type 1 Connection
Type 1 |\

Connection

Line segment 2

el /‘ \ (Short edge 2)
(Lone l;iige D \ \ ‘ (Type 2 connection)

\

L

(d) Updating footprint

Automation in Construction 103 (2019) 80-103

(b) Dividing arc edges

Line segment 1

L Arc 2-1
Al —
=]
Arc 2-2
Arc 1-2 «— Arc2-3
Arc 1-3 —> Line segment 2

(c) Segmenting arc edges

Fig. 12. Curved wall faceting steps.

conditions can be checked straightforwardly. For checking the third
condition, the two circular arcs are pre-processed as counter-clockwise
from the first trimming point to the second and then transformed into a
common polar coordinate following the method detailed in Section
4.4.3. As a result, each circular arc can be simply represented as a linear
interval (e.g., [Orrim1, O1rimz2]) by its two trimming points in the polar
coordinate. Then the intersection between two circular arcs can be
easily computed. Once a short edge of a candidate wall passes the test,
the resulting intersection would be recognized as a Type 1 connection
of the curved wall.

It is worth noting that, while implementing the detection, the
standard footprints of candidate walls defined in their own coordinate
systems need to be transformed into the coordinate system where the
footprint of the curved wall is defined. For each candidate wall, the
transformation refers to pre-multiplying its footprint geometry with a
corresponding transformation matrix (T¢,—c,)- In IFC, building objects
are depicted in hierarchically organized coordinate systems, which
generally follow the hierarchy of IFC spatial structure elements (i.e.,
IfcBuildingStorey, IfcBuilding, and IfcSite). Typically, a wall is defined
in a local coordinate system (LCS) relative to the LCS of a building
story, which is further referenced to a building. Given that candidate
walls and the curved wall belong to a same building, the footprints of
candidate walls are transformed into the LCS of the building first and
then into the LCS of the curved wall. Accordingly, T¢,—.c, of a candidate
wall can be computed by

Tea—cu = Tpuitd—cu X Tea— Build

@

_ 1
= (Tstor_cu—Buitd X Teussor_cu) ™ X (Tstor_ca—Buitd X Tta—stor_ca)

where Tcopuiss Thuitd—~cw Tca—storca Tstor CasBuilds Tcu—sswor.cu and
Tstor cu—puid Tefer to the transformation matrices from LCScandidatewan tO
LCSBuilding; from LCSBuilding to LCSCurvechall, from LCSCandidateWall to
LCSBu.ildingStoreyContainingCandidateWalh from LCSBu.ild.ingStoreyConta.ini.ngCa.nd.idateWa.ll

89

to LCSBuilding: from LCSCurvedWall to LCSBuildingStoreyContainingCurvedWall: and
from LCSBuildi.ngStoreyContaiJﬁngCurvedWa.ll to LCSBuildi.ng: respectively. The latter
four matrices can be directly derived from the IFC model.

4.4.2. Dividing arc edges

By taking the endpoints of detected connections as new trimming
points, each corresponding long edge in the standard footprint of the
curved wall is spilt into several ordered circular arc segments for the
following processing step. These segments are distinguished as con-
nection arc segments and non-connection arc segments. As an example
in Fig. 12(a), both long edges (Arc 1 and Arc 2) of the curved wall have
a connection with another wall. Accordingly, both are spilt into three
arc segments based on the endpoints of the connections, i.e., (Arc 1-1,
Arc 1-2, Arc 1-3) and (Arc 2-1, Arc 2-2, Arc 2-3), as shown in
Fig. 12(b). Among these segments, Arc 1-2 and Arc 2-2 are connection
arc segments and the others are non-connection arc segments.

4.4.3. Segmenting arc edges

In this step, two groups of circular arc segments that represent two
long edges are segmented as two polylines. A ray-based segmentation
method is developed to ensure that segmentation results are complied
with the output requirements. The basic idea of this method is to
construct a set of organized rays emitted from the center of the long
edges and then compute the intersection points between these rays and
the two groups of circular arc segments. The intersection points con-
stitute the vertices of the two polylines, as shown in Fig. 12(c).

(1) Polar coordinate system (PCS)
A PCS is used for each footprint to help the construction of rays and

the implementation of ray-circular arc intersection tests, as shown in
Fig. 13. The PCS takes the center C of the long arc edges as the pole O

H. Ying and S. Lee

A1(Rq,041)
AL(x41,Ya1)

A2(R3,042)
< A2(x42,Ya2)

~

Ray

(R2,0:qy)
(R 1 eruy) ¢

.. Ry (Radius of Arc 1)

Automation in Construction 103 (2019) 80-103

P(r,0)

eray

\‘ 0
Arc1 ‘ >
~ Polar axis L
C (X, ¥e) (Positive X-axis of LCS)
" R, (Radius of Arc 2) Y
X
e
Bl(Rl,Bgl) BZ(Rz,BBz) LCS of the footprint

B1 (xp1,¥p1) B2 (xp2,YB2)

Fig. 13. Polar coordinate system for long arc edge segmentation.

and positive X-axis of the Cartesian LCS of the footprint as the polar axis
L. Then a point P in the PCS is defined as (r,0), where r refers to the
Euclidean distance between P and C, and 0 refers to the angle measured
from L in the counter-clockwise direction. A long arc edge of the
footprint, e.g. Arc 1 in the figure, is thus described in the PCS by the
following four parameters: radius R;, the first trimming point
A1(R1,041), the second trimming point B1(R1,05;), and the arc direc-
tion. Furthermore, two settings are made to ensure that 05, is always
larger than 6,47, which greatly simplify the segmentation process: (1)
setting the arc direction to be counter-clockwise. Exchange the role of
two trimming points if the original direction is clockwise; and (2)
computing 03; and 0,4, by the following formulas:

arcos yAzl —% > Y1 2 Y
\/(J’A1 = %)%+ (xar — x¢)

Oa1 =

360 — arcos| — J’A21 — % = Y <%

\/(y/n =)+ (e — xe) @
Let 6; = arcos| ——22."% | and 6, = 360 — 6. Then,
JOB1 —¥6)? + (xB1 —Xc)?

61 Vo1 = V> 61> 6a1
6. - 360 + 61 Vg =, 61 <6
B 6, Vo1 <X 62> 641

360 + 92 Yer <X 92 < 9,41 (3)

where (xa1,Y41) and (xg1,ys1) refer to the Cartesian coordinates of A1
and B1 in the LCS of the footprint.

In the PCS, a ray emitted from the Pole O is defined by a polar angle
6,4y (see Fig. 13). The intersection between the ray and a circular arc,
for example Arc 1, is tested by checking whether 6;,, is in the interval
[641, 631]. If so, the intersection exists, and the polar coordinate of the
intersection point is (Ry,06,,) (see Fig. 13). Similarly, the intersection
between the ray and another long arc edge (i.e., Arc 2) is denoted as
(R2,0:qy). The Cartesian coordinates (x;p, y;p) of the intersection point
(Ry1,06rqy) can be computed by

{xlp =X, + Ry X cos 6y,

Yip =) + Ry X sin6yq, 4

(2) Segmentation method

The segmentation method, depicted in Fig. 14, takes the following
as inputs (see Input section in the figure): two lists of circular arc

90

segments (all segments are pre-processed such that their directions are
counter-clockwise) that represent two long edges, a segmentation de-
gree, four trimming points of the two long edges. All the circular arcs
and points are defined in the PCS. All connection arcs are explicitly
remarked in two lists for downstream processing.

The method approximately divides the two lists of circular arc
segments into two polylines with incrementally constructed rays. The
first and the last rays are created first (see Lines 2-3). The first ray is set
to pass through the first trimming point of an edge. The selection of the
edge depends on the shape of the wall end. The principle is that the ray
built with one edge must intersect with the other. This makes sure that
the shape of the wall end is maintained after the segmentation. For the
same reason, the last ray must pass through the second trimming point
of one arc edge and intersect with the other. Fig. 15 shows the con-
struction of the first and the last rays in different cases. Other rays
between the two rays are determined in a While loop (see Lines 5-29).
Starting with the first ray (see Line 4), the intersection points between
the ray and two lists of circular arc segments are detected, and the next
ray is generated based on a set of rules. The loop repeats the operations
until the ray (i.e., the polar angle) is not smaller than the last ray (see
Line 5).

The procedure of new ray generation in each iteration is as follows.
The first step is to find a circular arc segment (LA;) that the current ray
(r) intersects from the corresponding list of circular arc segments (LA)
(see Line 7 in Fig. 14). The second step is to create a temporary new ray
(Tanext) for the LA by the following two rules: 1) if LA; is not a con-
nection arc, ranex is assigned with the minimal value between (r +
SegementDegreee) and LA; 1rimm> (see Lines 8-11); and 2) if LA; is a
connection arc, then it should not be segmented and the rap.. is set as
LA; Trimm2 (see Lines 12-15). The third step is to repeat the previous two
steps for another list of circular arc segments (LB) and get a corre-
sponding temporary ray (rgpex) (see Line 19). The last step is to gen-
erate a new ray (I,ex) for the While loop based on the two temporary
rays: 1) if both temporary rays intersect a connection circular arc seg-
ment, then the smaller one is selected as 1., (see Lines 20-21); 2) if
only one temporary ray intersects a connection circular arc segment,
then the temporary ray is selected as . (see Lines 22-25); and 3) if
neither intersects a connection circular arc segment, then the larger one
is selected as Iy, (see Lines 26-27).

While executing the loop, the endpoints of two lists of circular arc
segments and the intersection points between constructed rays and
these circular arc segments are progressively inserted into two corre-
sponding output lists (i.e., R4 and Rp in Fig. 14; see Lines 9 and 13 in
the figure). Furthermore, as the loop ends before the last ray is reached,

H. Ying and S. Lee

Automation in Construction 103 (2019) 80-103

..., LAy} (Connection arcs are labelled);

if Intersection(7,ex¢, cOnnection arcs in LA) && Intersection(7g,ey¢, cOnnection arcs in LB) then

Input: Arc segments of long edge A: LA = {LA4, LA,,
Arc segments of long edge B: LB = {LBy, LB;, ..., LB} (Connection arcs are labelled);
Segmentation degree for an arc: SegmentDegree;
Trimming points of A and B: 7y rrim1, Ta_rrim2s T8_rrim1> TB.Trim2-
Output: Segmentation points of long edge A: Ry;
Segmentation points of long edge B: Rp.
1: Initialize Ry = {}and Rp = { };
2: Construct the first ray 7y;-sc = Max(va_rrim1, T_rim1)s
3: Construct the last ray 155 = Min(7y_rim2, 78 Trim2);
4T = Trirses
5: while r <1y do
6: for i=1:m do
7: if v> LA; rpim1 && 1 < LA; 1im> then // Ray rintersects with arc segment LA;
8: if LA; is not a connection arc then
9: R,4.Add (LA; Trim1), Ra-Add (1);
10: Tanext = Min(r + SegmentDegree, LA; 1rim2);
11: break;
12: else
13: R Add (LA; 1rim1), Ra-Add (LA;_1rim2);
14: Tanext = LAi Trim2;
15: break;
16: end if
17: end if
18: end for
19: repeat the same process from Line 6 to Line 18 for LB to get Rp and 7gpex¢;
20:
21 7 = Min(Tanext, TBnext):
22: else if Intersection(rpeyt, cOnnection arcs in LA) then
23: ' = Tanext;
24: else if Intersection(7g,ext, cONnection arcs in LB) then
25: T = TBnexts
26: else
27 7 = Max(Tanext, "Bnext):
28: end if
29: end while
30: if Tge == T4 7rimz then
31 R, Add (Tigst), Rp- Add (7145¢), Rp- Add (T5_rrim2);
32: else
33: R Add (rigst), Rp-Add (T4 rrim2), R Add (Tigst);
34: endif
35: R4 = RemoveDuplicates(R,), Rp = RemoveDuplicates(Rg);
36: return R, ,Rp;

Fig. 14. Long circular arc edge segmentation method.

the ray-circular arc intersection test for the last ray is specifically sup-
plemented (see Lines 30-34). In addition, any duplicate intersection
points in the two output lists need to be removed (see Line 34). Finally,
by using Eq. (4), the intersection points in the two output lists are
transformed from polar coordinates into Cartesian coordinates. These
transformed intersection points constitute the vertices of two polylines,
which are the required results for the segmentation of two long edges.

4.4.4. Updating the footprint

The vertices of two polylines generated from the arc edge segmen-
tation are stored in the counter-clockwise direction as the segmentation
is implemented along that direction (see the example in Fig. 16(a)). To
construct a closed polyline to represent the new footprint, the two
polylines are merged by inversely inserting the vertices of a polyline
into the other (see Fig. 16(b)). Specifically, the first vertex of the
merged polyline needs to be repeated as the last vertex to form a closed
polyline (see the vertex 39 in Fig. 16(b)). Then the polyline is defined as
the new footprint by an IfcPolyline instance, which further references a

91

set of IfcCartesianPoint instances that define the coordinates of the
vertices of the polyline. Updating the footprint of the curved wall is
completed when relevant IFC instances that represent the original
footprint are replaced with the new footprint representation (see
Fig. 17). Moreover, according to the IFC specifications, the curved wall
after faceting should be defined as an IfcWall instance as the resulting
wall has a non-uniform thickness. To maintain the original reference
relationships between the wall instance and other instances (e.g., Ifc-
ProductDefinitionShape and IfcRelContainedInSpatialStructure), only
the entity name of the wall instance is changed to IfcWall if the original
is IfcWallStandardCase (see Fig. 17).

The resulting wall meets all three output requirements. The foot-
print of the resulting wall is a closed polyline, which means that the
solid geometry represented by IfcExtrudedAreaSolid or
IfcBooleanClippingResult is a polyhedron with planar polygonal faces
only. Thus the first out requirement is satisfied. Next, in the segmen-
tation process, two arc edges are segmented simultaneously by the rays.
The intersections between any two adjacent rays and the two edges

H. Ying and S. Lee

Firstray: rfirse = 78 rrim1

Arc A Arc QA

Lastray: rigst = "5 1rim2

Case 1

First ray: 155 =

YA Trim1 = 7B_Trim1

Last ray: rigs¢ =

Case 2

Automation in Construction 103 (2019) 80-103

First ray: 1rirge = T4 trim1

Arc A

Lastray: g5t = T4 Trim2

TA_Trim2 = TB_Trim2

Case 3

Fig. 15. The edge selections for the first and last ray constructions in three cases.

produce pairwise line segments (e.g., AB and CD in Fig. 16(a)). The
pairwise segments are parallel as together with two rays (i.e., Ray 1 and
Ray 2) they make two similar triangles (e.g., AABO and ACDO). This
means that two planar surfaces corresponding to the two line segments
are parallel to each other, and thus the second output requirement is
satisfied. Regarding the third requirement, how much the original
shape characteristic is maintained depends on how many line segments
the arc edges are divided into. In the proposed faceting algorithm, this
is mainly controlled by the input parameter “SegmentDegree”: the
smaller the value is, the closer the faceting result is to the original
shape. The recommended value of the circular arc segmentation for
each segment is 5 or 10 degrees [37]. This study takes 5 degrees for
demonstration.

4.5. Updating geometries of relevant building objects
In this phase, straight walls with curved surfaces, openings on

curved walls, spaces enclosed by curved walls, and curved slabs are
updated to fit the faceted geometries of the curved walls. This updating,

Polyline A Polyline B

(@

92

on the one hand, facets the curved surfaces of these building objects for
building energy modeling, and on the other hand, eliminates incorrect
geometric relationships between these building objects and faceted
walls (see examples in Fig. 18). All the geometry updating operations
are implemented on the footprints of relevant building objects given
that their geometries are represented by IfcExtrudedAreaSolid or Ifc-
BooleanClippingResult.

4.5.1. Updating geometries of straight walls with curved surfaces

Straight walls with curved surfaces can be identified by checking
whether their standard footprints contain short arc edges. This type of
walls mainly occurs when they are connected to curved walls. In this
case, as discussed in Section 4.4.3, the short arc edges of straight walls
would be identified as Type 1 connections of the curved walls. In the
curved wall faceting process, all the Type 1 connections are not seg-
mented but directly approximated as a line segment. Therefore, the new
footprint of a straight wall (no matter connected or not connected to
curved walls) can be straightforwardly created by replacing short arc
edges with corresponding line segments and then merging all linear

(b)

Fig. 16. Construction of closed polyline-based footprint: (a) two polylines resulting from the arc edge segmentation; (b) closed polyline-based footprint.

H. Ying and S. Lee

#589=
IFCWALLSTANDARDCASE('31_b40etj
8SxGoVKJjIFYM',#41,'Basic Wall:Generic
-379:306184',$,'Basic Wall:Generic -
379:321703",#312,#587,'306184");

1

: IfcWallStandardCase
: N

1 IN

1 N

N~
N

#587=
IFCPRODUCTDEFINITIONSHAPE(S,$,(
#320,#580,#585));

#580=
IFCSHAPEREPRESENTATION(#94, Body
''SweptSolid',(#576));

v
v

Automation in Construction 103 (2019) 80-103

#589=
IFCWALL('31_b40etj8SxGoVkIJIFYM'#
41,'Basic Wall:Generic -
379:306184',$,'Basic Wall:Generic -
379:321703"#312,#587,'306184");

IfcWall

IfcProductDefinitionShape

IfcShapeRepresentation

#576=

IFCEXTRUDEDAREASOLID(#574,#575 # IfcExtrudedAreaSolid

19,4000.);

#574= ¢ #574 =
IFCARBITRARYCLOSEDPROFIL IfcArbitraryClosedProfileDef [FCARBITRARYCLOSEDPROF

EDEF(.AREA.,$,#541);

7
_______________________________ > £
#541= P
[FCCOMPOSITECURVE((#328,#336,#34 i
3435043574364, 371 #3T8 H385 439204 1 ComnositeCurve

399,#406,#413,#420,#427 #434,#441,#448
H#455,#462,#469,#476,#483,#490,#497 #5 I
04,#511,#518 #525,#533,#540),.F.);

#328= A\
IFCCOMPOSITECURVESEGMENT IfcCompositeCurveSegment
(.CONTINUOUS.,.T.,#326); 1

.. 1

#326= 1
IFCPOLYLINE((#322,#324)); \%
IfcPolyline/IfcTrimmedCurve

#530=
IFCTRIMMEDCURVE(#529,(IFCP
ARAMETERVALUE(153.66530083
7659)),AFCPARAMETERVALUE(2
06.33469916234)),.T., PARAMETE
R);

Original footprint representation to be deleted

ILEDEF(.AREA., $, #2862);

N

IfcPolyline

#2862 = IFCPOLYLINE((#2863,
#2864, #2865, #2866, #2867,
#2868, #2869, #2870, #2871,
#2872, #2873, #2874, #2875,
#2876, #2877, #2878, #2879,
#2880, #2881, #2882, #2883,
#2884, #2885, #2886, #2887,
#2888, #2889, #2890));

#2863 =
IFCCARTESIANPOINT((168.029
661883774, -87.6143979447779));
#2864 =
IFCCARTESIANPOINT((18.6586
394606575, -387.614398224999));

IfcCartesianPoint

#2890 =
IFCCARTESIANPOINT((168.029
661883774, -87.6143979447779));

New footprint representation to be updated

Fig. 17. Updating the footprint representation of a curved wall in IFC STEP 21. Note: instances in dash box refer to the deleted original representation and instances
in solid box refer to the updated representation.

()

(b)

Fig. 18. Incorrect geometric relationships: (a) geometric clash between a straight wall and a faceted wall; (b) geometric inconsistency between a window and a
faceted wall; and (c) geometric clash between a space and a faceted wall.

93

H. Ying and S. Lee

Automation in Construction 103 (2019) 80-103

Short edge 1 New short edge 1
(Circular arc) (Line segment)
V] @{®V8 V7 '_.VS -
v ® — @V5 Vie ® V5 Vi V5
Long edge 1 Long edge 1
(Line segment) (Line segment)
“ | =) >
Long edge2 Long edge 2
(Line segment) (Line segment)
Vie — evs V21 o Vo V2e g ve
v P,
v: ®-ey, \E, V4
Short edge 2 New short edge 2 Closed polyline

(Circular arc)

(a) Standardized footprint
representation

(b) Replacing arc short edges with
corresponding line segments

(Line segment) (V1,V2,V6,V5,V1)

(c) Merging line segments to
form a closed polyline

Fig. 19. Updating the footprint of a straight wall with curved surfaces.

edges to form a closed polyline-based footprint, as illustrated in Fig. 19.
Finally, the new footprint is written into the IFC model to replace the
original one. It is identical to the footprint updating of curved walls
specified in Section 4.4.4.

4.5.2. Updating geometries of openings on curved walls

In IFC models, window and door geometries are often defined in
great detail. For example, the geometry of a window may contain
dozens of faces when each individual mullion is described. However,
this level of detail is not necessary for a BEM, where openings only need
to be represented as planar surfaces on the relevant wall surfaces
[11,16]. In most existing IFC BIM - to - BEM transformation methods,
not the geometries of doors and windows but the geometries of corre-
sponding opening elements (i.e., IfcOpeningElement) are processed and
transformed [10,11]. IfcOpeningElement defines a void in a wall that
fills a door or a window and its geometry is much simpler. Therefore,
this study updates the geometries of the IfcOpeningElement instances
corresponding to doors and windows. The updating process is explained
as follows:

(1) Identifying opening elements on curved walls

In CDM 2010, the relationship between a wall and an opening
element (i.e., IfcOpeningElement), and the relationship between an
opening element and the filled window (i.e., IfcWindow) or door (i.e.,
IfcDoor) are mandatorily defined by IfcRelVoidsElement and
IfcRelFillsElement respectively. The opening elements filling windows
and doors on curved walls can thus be identified based on these re-
lationships.

(2) Extracting and standardizing footprints

The methods to extract and standardizing footprints of opening

94

elements are identical to those of curved walls, which have been de-
scribed in Sections 4.2 and 4.3.2 respectively. It is noteworthy that, for
a cuboid opening element, the required footprint refers to either one of
two faces that cross the wall thickness. Those two faces are dis-
tinguished from others by comparing the angle between the normal of
each cuboid face and the normal of the footprint plane of the wall. In
addition, as the LCS of an opening element is relative to the wall, the
standard footprint of an opening element needs to be transformed in the
LCS of the wall for geometry operations in the next step.

(3) Reconstructing footprints

This step is to process the standard footprint of an opening element
to generate a new footprint which fully overlaps with the footprint of
the relevant faceted wall. As an example, Fig. 20 illustrates the process
of reconstructing the footprint of an opening element that fills a
window.

First, the standard footprint is projected onto the footprint plane of
the wall (see Fig. 20(a)). As the footprint has been transformed in the
LCS of the wall, the projection direction refers to the wall's extrusion
direction defined in IfcExtrudedAreaSolid or IfcBooleanClippingResult.

Second, four corner points of the new footprint are computed (see
Fig. 20(b)). These corner points (i.e., CP1, CP2, CP3 and CP4 in the
figure) refer to the intersection points between the two lines (i.e., Line 1
and Line 2) where the opening's two short edges are and the wall's
polygonal footprint boundary which essentially consists of continuous
line segments. The corner points are thus detected by performing a set
of line - line segment intersection tests.

Third, a new footprint of the opening element consisting of two long
and two short edges is reconstructed by the following procedure:

e Each long edge is constructed by tailoring a long edge of the wall
with two corner points on that edge. In Fig. 20(c), two portions

H. Ying and S. Lee

Original
short edge 1

Original
long edge 2

Pl

Original
long edge 1

Original
short edge

(@) (b)

2

Automation in Construction 103 (2019) 80-103

New
short edge 1

v

lcp1

New long

/ edge 1

{ New
short edge 2

(©

Fig. 20. Reconstruct the footprint of an opening element that fills a window: (a) footprint projection; (b) corner point detection; (c) new footprint construction.

representing two new long edges (i.e., polyline (CP1, P1, CP3) and
polyline (CP2, P2, CP4)) are tailored from the two long edges of the
wall by two pairs of corner points, <CP1, CP3> and <CP2, CP4).

e Each short edge is constructed by a pair of corner points that result
from the intersection between the line where the original short edge
is and the wall's footprint boundary. In Fig. 20(c), two new short
edges (i.e. line segment (CP1, CP2) and line segment (CP3, CP4)) are
produced by two pairs of corner points, <CP1, CP2> and <CP3, CP4>.

® A closed polyline representing the new footprint on the wall foot-
print plane is obtained by merging the four reconstructed edges.
Corresponding to the example in Fig. 20(c), the closed polyline
(CP1, P1, CP3, CP2, P2, CP4, CP1) refers to the new footprint.

o The new footprint is projected back onto the original footprint plane
of the opening element and transformed back into the LCS of the
opening element.

(4) Updating footprints in the IFC model

The process of updating the footprint of an opening element is
identical to that of a curved wall (see Section 4.4.4), including two
steps: 1) wrap the new footprint by an IfcPolyline instance together
with its referenced IfcCartesianPoint instances; and 2) replace the IFC
instances that represent the original footprint with the new footprint
representation.

4.5.3. Updating geometries of spaces enclosed by curved walls
The geometries of spaces in IFC models are updated by the following
three steps:

(1) Extracting and standardizing the footprint of a space

The footprint extraction method for a curved wall (Section 4.2) is
directly used to extract the footprint of a space from an IfcSpace in-
stance in an IFC model. The extracted footprint need to be standardized
for the following steps as arc edges of the footprint may be

95

approximately represented as line segments or polylines. The corner
vertex - based method presented in Section 4.3.2 is specifically for
standardizing a footprint that has evident corner vertices. However, this
is not always the case for space footprints. Common representative case
is that two connected arc edges with close curvatures on the connected
point are approximately represented as a polyline. It would be difficult
for that method to identify the corner vertex (i.e., the connected point)
from the vertices of that polyline.

To address this issue, a three-step method is developed for space
footprint standardization. First, given a space footprint, a closed poly-
line-based temporary footprint is constructed by using the endpoints of
line segments and/or circular arcs in the space footprint. Second, the
temporary footprint is standardized by reconstructing straight and cir-
cular arc edges. Third, the final standard footprint is created by up-
dating the standard temporary footprint with original circular arcs. The
details of the first and the third steps are omitted here as they are
identical to the first and the fourth steps of the wall footprint stan-
dardization method (see Section 4.3.2). The pseudo code of the second
step is shown in Fig. 21.

The edges of the temporary footprint are mainly reconstructed via a
while loop (see Lines 3-23 in the figure). In each iteration, the first
three vertices in the temporary footprint are checked first whether they
are on a common line. If so, other vertices of the temporary footprint
also need to be checked one by one whether they are on that line (Lines
5-8). The checking terminates when a vertex not on that line is found.
Then a straight edge is constructed with the first and the last vertices in
the set of vertices on that line (Line 9). If the first three vertices in the
temporary footprint are not on a common line, they are fitted with a
circle (Line 11). Then two central angles corresponding to the three
vertices are computed. If both central angles are smaller than a
threshold (e.g., 10 degree), the three vertices belong to an arc edge.
Checking whether other vertices are on the circle continues until an
unqualified vertex is found (Lines 13-16). Then a circular arc edge is
constructed by tailoring the circle with the first and the last vertices in
the set of vertices on that circle (Line 17). If both central angles are

H. Ying and S. Lee Automation in Construction 103 (2019) 80-103

Input: Temporary footprint (a closed polyline) consisting of ordered vertices: TF;

Output: New temporary footprint (a mixture of line segments and circular arcs): NTF.

1: Initialize NTF = {};

2: | = NumerOfVertices(TF);

3: while [>2 do

4: if IsOnALine(TFy, TF;,TF,) then

5: m=2;

6: while m < [&& DotProduct (—I%I ’—I%I) > 0.9999 do // Check whether TEy, is
/I on the line (TFy, TF,)

7: m=m+l1;

8: end while

9: NTF.Add(CreateLineSegment(TFy, TEy)); // Create a line segment edge

10: TF.RemoveRange({TF;|i = 0 and i < m}); // Update TF by removing checked vertices

11: else if IsOnACircle(TFy, TF;, TF,) then

12: circle = CreateCircle(TF,, TF;, TF,);

13: n=2;

14: while n <! && |Distance(TF,, circle. centre) — circle.radius| < 1mm do

15: n=n+l;

16: end while

17: NTF.Add(CreateCircularArc(circle, TFy, TFE,)); // Create a circular arc edge

18: TF.RemoveRange({TF;|i = 0 and i < n});

19: else

20: NTF.Add(CreateLineSegment(TFy, TF;));

21: TF.Remove(TFy);

22: end if

23: end while

24: if [==2 then

25: NTF.Add(CreateLineSegment(TFy, TF;));

26: end if

27: Return NTF,

Fig. 21. Temporary footprint standardization for spaces.

larger than the threshold, the first two vertices belong to a straight edge
(Line 20). In each iteration, the temporary footprint is updated by re-
moving the vertices that have been used for edge reconstruction (Lines
10, 18, 21). The while loop ends when no > 2 vertices remain in the
temporary footprint. If there are still two vertices left, they are directly
used to define a straight edge (Lines 24-26).

(2) Identifying spaces enclosed by curved walls

After all footprints are standardized, spaces with arc edges are
identified. Only their geometries need to be updated.

(3) Reconstructing footprints of identified spaces

The footprint of each identified space is reconstructed by replacing
all the arc edges with corresponding sections in the faceted footprints of
the curved walls that enclose the space. Fig. 22 shows the pseudo code
of the proposed space footprint reconstruction method and Fig. 23 il-
lustrates the main steps with an example.

The proposed method takes the followings as inputs: the standard
footprint of a space, both standard and faceted footprints of curved
walls, and transformation matrices from LCSs of curved walls to the LCS
of space. The calculation of a transformation matrix from a curved wall
to a space is similar to the transformation matrix computation between
two walls, which has explained in Section 4.4.1. As a pre-processing
step, the standard and faceted footprints of curved walls are trans-
formed from their own LCS into the coordinates of the space (see Lines
2 and 3 in Fig. 22).

Second, for each arc edge of the space, all the curved walls con-
nected to the space on that edge are identified and the connections are
computed by a circular arc - circular arc overlap test (see details in
Section 4.4.1) (Line 8). Specifically, this test is implemented on the arc
edge of the space and two long edges of the standard footprint of each

96

curved wall. As the arc edge of the space may connect different curved
walls, all curved walls need to be checked to compute the connections
until the sum of the connections covers the entire arc edge. In the ex-
ample of Fig. 23(a), Space A has one arc edge V2V3 and connects only
with Curved Wall A. Thus, the connection arc of the arc edge V2V3 is
itself.

Third, each arc edge of the space is updated with a polyline. This
polyline is produced by merging a set of polylines in the faceted foot-
prints of curved walls, which correspond to the connection arcs ob-
tained in previous step (Lines 9-15). In Fig. 23(b), the connection arc
V2V3 corresponds to the polyline (P1, P2, P3, P4, P5, P6, P7, P8) in the
faceted footprint of Curved Wall A. Hence, this polyline is used to re-
place the arc edge V2V3 of Space A.

After all the arc edges of the space are processed, a closed polyline-
based footprint for the space is obtained by merging its original straight
edges and the new polyline-based edges (Line 18). Corresponding to the
example in Fig. 23, the new footprint for Space A is constructed as (V1,
P1, P2, P3, P4, P5, P6, P7, P8, V4, V1).

(4) Updating footprints of identified spaces in the IFC model

Updating space geometries is completed by writing all the new re-
constructed footprints into the IFC model to replace their original ones.
The process is the same as the process of updating the footprint of a
curved wall (Section 4.4.4).

4.5.4. Updating geometries of slabs with curved surfaces

Unlike updating geometries of straight walls, openings and spaces,
updating slab geometries does not need to consider geometric re-
lationships with curved walls. This is because slabs generally are not
connected with curved surfaces of walls. This means that the connec-
tions of curved walls with slabs are not affected by the curved wall
faceting processes. Updating the geometry of a slab is thus simply to

H. Ying and S. Lee Automation in Construction 103 (2019) 80-103

Input: Space standard footprint consisting of circular arcs and line segments: S_SF;
Standard footprints of all curved walls: CW _SF's;
Faceted footprints of all curved walls: CW _FFs;
Transformation matrices from all curved walls’ LCSs to the space’s LCS: T's.
// Note: The corresponding relationships between CW_SFs, CW _FFs and Ts are preserved
Output: Updated space footprint (a closed polyline): USF.
1: Initialize USF = { } and UpdatedEdges = { };
2: CW_SFs = Transform(CW _SFs,Ts);
3 CW _FFs = Transform(CW _FFs,Ts);
4: foreach curve C in S_SF do
5: if C isaline segment then
6: UpdatedEdges.Add(C);
7 else if Cisa circulararc then
8 List<circular arc> Connections = ComputeOverlaps(C, CW_SFs); // Find curved
// walls that bound the space on arc C and compute the overlap arc sections
9: Initialize Ps = { };
10: foreach circular arc CA in Connections do
11: P = FindPolyline(CA, CW _FFs); // Find the polyline section corresponding
// to the overlap arc CA in CW_FFs
12: Ps.Add(P);
13: end foreach
14: edge = Merge(Ps); // Merge all found polyline sections into a single polyline
15: UpdatedEdges. Add(edge);
16: end if
17: end foreach
18: USF = Merge(UpdatedEdges); |/ Merge all updated edges to form a closed polyline
19: Return USF;

Fig. 22. Space footprint reconstruction method.

facet all curved surfaces (i.e., approximate arc edges of a footprint into
line segments), which consists of the following three steps:

(1) Identifying slabs that need to be updated

Footprints of slabs are extracted from IfcSlab instances by using the
footprint extraction method for curved walls (see Section 4.2). Slabs
with a footprint containing circular arc edges are recognized for
downstream processing.

(2) Constructing new footprints for the identified slabs
The footprint of each identified slab is constructed by segmenting all

the circular arc edges into sets of line segments and then merging them
with other linear edges to form a closed polyline. The computational

9
V2 V1
Space A
V3 Vig
™ Curved Wall A
(Standardized footprint)

(@)

Fig. 23. Footprint reconstruction of a typical space: (a) identifying curved wa
sponding faceted boundaries of curved walls.

method is shown in Fig. 24.

The new footprint is progressively constructed by processing the
continuous curve elements of an extracted footprint one by one. For a
linear curve element (i.e., IfcPolyline), its vertices are inserted into the
vertex set of the new footprint. The order of these vertices should be
consistent with current vertex set and there should be no duplicate
vertices (see Lines 3-14 in the figure). A circular curve element (i.e.,
IfcTrimmedCurve) is segmented as a polyline within the following four
steps (see Lines 15-27). First, the circular arc is redefined as counter-
clockwise if not and further transformed into a polar coordinate system
by the method explained in Section 4.4.3 to ease the segmentation
(Lines 16-17). Second, the ray-based segmentation method explained in
Section 4.4.3 is fine-tuned to segment the circular arc into a polyline
(Lines 17-24). Subsequently, the vertices of the generated polyline are
transformed from the built polar coordinates back into the original

®
A4

Space A

V4

™~ Curved Wall A
(Faceted footprint)

(b)

lls that enclose the space; (b) updating arc edges of the space footprint with corre-

97

H. Ying and S. Lee

Automation in Construction 103 (2019) 80-103

Input: Original slab footprint consisting of continuous curves: OF;
Segmentation degree for circular arc edges: SD.
Output: Segmented slab footprint (a closed polyline): SF.
1: Initialize SF = { };
2: foreach curve C in OF do
3: if C is a polyline (IfcPolyline) then
4: if Distance(FirstVertex(C), LastVertex(SF)) < 0.0lmm then // Check whether
/| FirstVertex(C) and LastVertex(SF) are a same point
S: C = RemoveFirstVertex(C);
6: foreach vertexV in C do
7: SF.Add(V);
8: end foreach
9: else if Distance(LastVertex(C), LastVertex(SF)) < 0.01lmm then
10: C = ReverseVertexOrder(C);
11: Repeat the same processes from Line 5 to Line 8;
12: else
13: Repeat the same processes from Line 6 to Line 8;
14: end if
15: else if C is a circular arc (IfcTrimmedCurve) then
16: C = SetArcDirectionAsAnticlockwise(C); // Redefine C as anti-clockwise if not
17: C_Polar = TransformToPolarCoordinates(C);
18: Initialize Points_Polar = {}; / Polar angles of segmented points
19: 0 = C_Polar. O7rim1; /I Polar angle of the first trimming point
20: while 6 < C_Polar.Ory iy, do
21: Points_Polar.Add(6);
22: 6=6+SD,;
23: end while
24: Points_Polar.Add(C_Polar. O1yim2);
25: Points_Cartesian = TransformToCartesianCoordinates(Points_Polar);
26: Repeat the same processes from Line 4 to Line 14 for Points_Cartesian;
27: end if
28: end foreach
29: SF.AddVertex(SF[0]);
30: Return SF;

Fig. 24. New footprint construction for slabs.

Cartesian coordinates using the Eq. (4) in Section 4.4.3 (Line 25). Fi-
nally, these vertices are inserted into the vertex set of the new footprint
by the linear curve element processing method shown in Lines 4-14.
Once all the curve elements are processed, the new footprint con-
struction is completed by repeating the first vertex as the end to form a
closed polyline (Line 29).

(3) Updating footprints in the IFC model

The geometry of each slab is updated by writing the new footprint
representation into the IFC model to replace the original one. The
process is same as the process of updating the footprint of a curved wall
(see Section 4.4.4).

4.6. Removing original SBs

After the geometries of curved walls and relevant building objects
have been faceted and updated, the original SBs in the input IFC model
need to be removed. In IFC, SB is defined as an objectified relationship
by a set of linked entities, as shown in Fig. 25. To cleanly delete SBs
without destroying syntactic integrity of the IFC model, all the entity
instances involved in defining SBs but not referenced by other irrele-
vant instances are deleted. In this regard, IfcRelSpaceBoundary in-
stances need to be deleted as they only relate to SB definition. Entity
instances including IfcConnectionSurfaceGeometry, IfcCurveBounded-
Plane, IfcPlane, IfcPolyline, IfcAxis2Placement3D, IfcDirection and
IfcCartesianPoint can be deleted only if they do not have reference
relationships with other instances that are out of the scope of SB defi-
nition. IfcOwnerHistorey instance is reserved as it is referenced by other
instances such as IfcBuilding and IfcBuildingStorey. Instances

98

representing spaces (i.e., IfcSpace) and building elements (i.e., Ifc-
BuildingElement) must be kept as they define important information
irrelevant to SBs.

5. Algorithm implementation and validation
5.1. Algorithm implementation

To prove the feasibility of the proposed algorithm, a prototype ap-
plication is developed in C#. The IFC Engine DLL [38] is used to process
IFC instance files, including reading and extracting required informa-
tion from input IFC files as well as writing new IFC files with the pro-
cessed results. Fig. 26 shows a screenshot of the graphical user interface
of the prototype application.

5.2. Algorithm validation

To verify the performance of the algorithm, a simple building model
and a real-world building model are used. Both models were created in
Revit 2017 and exported as an IFC instance file in the mode of CDM
2010.

The simple building model (see Fig. 27(a)) is specifically designed
by including curved walls with all footprint representation forms. This
model also demonstrates all basic types of geometrical relationships
between curved walls, straight walls, openings, spaces and slabs: curved
walls have connections with other walls (curved walls and straight
walls) on both curved faces (Type 1 connections) and end faces (Type 2
connections); curved walls host an opening (a door or a window);
curved walls enclose spaces; and curved walls are placed on slabs with
curved surfaces. Table 1 gives a detailed explanation of the features of

H. Ying and S. Lee

ﬂfcRelSpaceBoundary

+ GloballD

+ OwnerHistory >
Name
Description

+ RelatingSpace >
RelatedBuildingElement >
ConnectionGeometry >

+ PhysicalOrVirtualBoundary
Q IntemalOrExtemalBoundaryj

~

IfcOwnerHistory

I

IfcSpace

IfcBuildingElement (ABS)]

Automation in Construction 103 (2019) 80-103

'l

IfcConnectionSurfaceGeometry
+ SurfaceOnRelatingElement >
SurfaceOnRelatedElement >

IfcCurveBoundedPlane

+ BasisSurface >

+ OuterBoundary >
InnerBoundaries >

IfcPlane

+ Position >

IfcAxis2Placement3D)

+ Location > "‘l—b

Axis >
RefDirection >

IfcCartesianPoint
+ Coordinates

IfcPolyline
+ Points >

IfcCartesianPoint
+ Coordinates

Fig. 25. Instantiation diagram to define SBs in CDM 2010.

2. Process the input IFC file

1

IfcDirection
+ DirectionRatios

8 IFC Curved Wall Faceting 7 — O X
227 -7 e
IFC File: wﬁcdlon \PhD study\(Done) App_IFC Curved Wal Faceting\Test models\| : Input... :(- -
el e Y -_———— RN
: Curved Wall Processing | \
—_— ! 1. Input an IFC file
Buildin’g Objects _ _ _ _ __Guo _ _________ Status -]
Cpifed Wall 09v2BIRNn4Bfowl_NG6TYH Faceted ™
Lurved Wall 09v2BIRNNn4Bfowl_NG6TeZ Faceted \
l‘ Curved Wall 09v2BIRNn4Bfowl_NG6TuA Faceted \|
: Straight Wall (Curved surfaces) 09v2BIRNNn4Bfowl_NGGTRA Updated :
1| Straight Wall (Curved surfaces) 09v2BIRNNn4Bfowl_NG6Tdu Updated |
1| Straight Wall (Curved surfaces) 09v2BIRNNn4Bfowl_NGG6Tbd Updated 1]
: :‘\ _ 3. Summary of the
" Opening TLu_fUSAVACe 7ThSKwiMJys Updated | processing results
| Opening 1Lu_fUSAVACe ThSKwiMJZt Updated |
: Space 09v2BIRNNn4Bfowl _NGESC4 Updated :
1| Space 09v2BIRNn4Bfowl _NGG6SDv Updated 1
: Space 09v2BIRNNn4Bfowl_NGE6SD_ Updated |
1
: Slab 09v2BIRNNn4Bfowl_NG6S6z Faceted :
|| Slab 09v2BIRNn4Bfowl _NGG6SFB Faceted |
1 f 4. Output a new
) \Space boundary 1DpJWEIGD37hTi42eq7LDH Deleted /7 IFC file with
Sﬂa&e boundary 25_mTnBn8LvBdDnQRD_yJ Deleted 4 ~ processed results
< . — ~ -~ 5]

—— = — -y

- - -

4

- -
IFC Fie: [D:\Application\PhD study\(Done) App_IFC Curved Wall Faceting\Test models\| : | Output... | :(— -

Fig. 26. Graphical user interface of the prototype application.

99

H. Ying and S. Lee Automation in Construction 103 (2019) 80-103

Curved Wall C

Curved Wall A

Curved Wall B

(a) Original building model (b) Resulting building model

kﬂ

(¢) Faceted curved walls and updated (d) Updated openings (and the faceted walls
straight walls in the resulting model hosting them) in the resulting model

o X 3

(e) Updated spaces in the resulting model (f) Faceted slabs in the resulting model

Fig. 27. Simple building model for the experiment and its faceting results. Note: The ceiling slab and spaces are hidden in (a) and (b) for the visualization of building
interiors.

Table 1
Features of the simple building model.
Curved walls Footprint representation form Type 1 connection (Y/N) Type 2 connection (Y/N) Hosting openings (Y/N) Placed on curved slabs (Y/N)
Curved wall A Forms 1&2 Y Y Y (door) Y
Curved wall B Form 3 N Y N Y
Curved wall C Form 4: LE1(CA); LE2(P); SE1(LS); SE2(LS) Y Y Y (window) Y

Note: LE = Long edge; SE = Short edge; CA = Circular arc; P = Polyline; LS = Line segment.

this model. The real-world model representing one story of a complex university
Fig. 27(b)-(f) shows the experiment results of the simple building building (see Fig. 28(a)) is further used to test the reliability and fea-
model. These figures clearly demonstrate that the proposed algorithm sibility of the algorithm. This model has a total of 99 walls, 29 open-

performs as intended: (1) all curved walls are correctly identified and ings, and 47 spaces (the complex curved corridor space was divided
faceted with correct geometric connections with their connected walls; into 4 smaller spaces using “Room Separator” in Revit). Among them,
(2) straight walls with curved surfaces (caused by the connections with there are 12 curved walls, 13 straight walls with curved faces, 9
curved walls) are fully updated; (3) openings on curved walls and openings on curved walls, 18 spaces partially enclosed by curved walls,
spaces enclosed by curved walls are accordingly updated to be con- and 2 curved slabs. Table 2 gives a summary of the features of this
sistent with corresponding faceted walls; and (4) slabs with curved model. Compared to the simple building model, this model covers all
surfaces are faceted. types of curved walls in terms of the footprint representations in Form

100

H. Ying and S. Lee

V12 W3’

W5

(a) Original building model

Automation in Construction 103 (2019) 80-103

(b) Resulting building model

(c) Faceted curved walls and updated
straight walls in the resulting model

s @

(e) Updated spaces in the resulting model

(d) Updated openings (and the faceted walls
hosting them) in the resulting model

(f) Faceted slabs in the resulting model

Fig. 28. Real-world building model for the experiment and its faceting results. Note: The ceiling slab and spaces are hidden in (a) and (b) for the visualization of

building interiors.

4. Furthermore, more geometrical relationships between various
building objects are included.

Fig. 28(b) depicts the output IFC model produced by the prototype
application. Fig. 28(c)-(f) demonstrates the processing results of curved
walls and their connected straight walls, all the openings on curved
walls, all the spaces enclosed by curved walls, and all curved slabs re-
spectively. These results show that all relevant building objects in ori-
ginal building model are fully and correctly processed.

6. Limitations and future work

Four main limitations of the proposed algorithm are acknowledged.
First, the proposed algorithm is restricted to curved walls and re-
levant building objects (i.e., straight walls, openings, spaces and slabs)
whose shapes can be represented by IfcExtrudedAreaSolid or
IfcBooleanClippingResult. It facets curved surfaces of these objects by

approximating or updating corresponding curved edges in their 2D
planar footprints with polylines. In other words, the algorithm is 2.5D
based and mainly works on planar footprints rather than curved sur-
faces directly. Therefore, it cannot address curved building objects (e.g.,
walls with toroidal surfaces, spherical surfaces or B-spline surfaces) that
cannot be defined as a footprint-based representation. Curved walls in
this case need to be handled on the 3D surface level, and so do the
geometric updating of relevant building objects. Currently, many
curved surface meshing algorithms (e.g., Delaunay triangulation and
Advancing Front Method) have been developed [39]. However, those
algorithms may not be able to produce results complying with the four
output requirements (see Section 3.2) for the purpose of building en-
ergy modeling. Further research on developing 3D surface - based
curved wall faceting algorithm for building energy modeling is thus
needed.

Second, the proposed algorithm can update the geometries of

H. Ying and S. Lee

Table 2

Features of the university building model.
Curved Footprint Number of Type 1 Number of
walls representation form connections hosting openings
w1 Form 4-1 0 1
w2 Form 4-1 0 1
w3 Form 4-2 4 3
w4 Form 4-2 5 4
W5 Form 4-3 2 0
Wé Form 4-3 1 0
w7 Form 4-3 1 0
w8 Form 4-4 0 0
W9 Form 4-3 3 0
W10 Form 4-3 2 0
W11 Form 4-2 0 0
w12 Form 4-2 0 0

Note: (1): LE = Long edge; SE = Short edge; LS = Line segment; CA = Circular
arc; P = Polyline.

(2): Form 4-1 = (LE1(CA); LE2(CA); SE1(CA); SE2(P)).

(3): Form 4-2 = (LE1(CA); LE2(CA); SE1(LS); SE2(LS)).

(4): Form 4-3 = (LE1(CA); LE2(P); SE1(LS); SE2(LS)).

(5): Form 4-4 = (LE1(CA); LE2(CA); SE1(LS); SE2(P)).

openings whose footprints run through the thickness of curved walls
only (the footprint of an opening can be parallel or non-parallel to the
footprint of the curved wall). However, some shapes of openings such
as circular and arched windows, the footprints of which are usually
along the side surfaces of walls, are also common in practice. The im-
provement of the algorithm to handle these openings on curved walls is
thus also suggested as future work.

Third, the proposed algorithm can process curved walls and relevant
building objects with footprints bounded by a closed composite curve
that consists of circular arcs and/or line segments only. It cannot di-
rectly process footprints with other parametric curves (e.g., ellipse arc
and B-spline) and nonparametric arbitrary curves. Segmentation
methods to process those parametric curves while faceting curved walls
need to be studied in future. A promising approach for arbitrary curve-
based footprints is to add a pre-processing step to the algorithm that
approximates footprint boundaries with circular arcs and line segments.
Several arbitrary planar curve approximating approaches such as ge-
netic algorithms [40], adaptive smoothing [41], and dynamic pro-
graming [42] found in pattern recognition and image processing field
are considerable for further investigation.

Fourth, at this point, the proposed algorithm processes IFC models
complying with CDM 2010. Although this MVD supports the definition
of curved walls and relevant building objects targeted in this study, it
only provides three types of curve elements (i.e., line segment, polyline
and circular arc) to define footprint boundaries. Other curve elements
such as ellipse arc and B-spline are not supported, which limits the
ability of this MVD to represent relevant curved shapes. Furthermore,
this MVD is based on the IFC2x3 TC1 schema, which cannot explicitly
define some common curved surfaces such as toroidal surfaces, sphe-
rical surfaces and B-spline surfaces. However, IFC4 Add2 not only al-
lows to define those curved surfaces (by IfcToroidalSurface,
IfcSphericalSurface and IfcBSplineSurface, respectively), but also pro-
vides powerful curved solid representation approaches including
IfcTriangulatedFaceSet and IfcAdvancedBrep. In future, the IFC model
parsing module of the algorithm needs to be improved to be able to
process IFC4 based models.

7. Conclusions

Existing IFC BIM-to-BEM transformation approaches are not fully
capable of handling building objects with curved surfaces in IFC
models. To address this limitation, this study extends existing trans-
formation approaches by suggesting a pre-processing step to detect and
facet curved geometries in IFC models. The pre-processed IFC models

102

Automation in Construction 103 (2019) 80-103

with polyhedral geometries only thus can be processed by the existing
transformation approaches to create geometries of a building energy
model.

Specifically, this study introduces an algorithm to facet curved walls
in IFC models into polyhedron-based geometries. The main idea of the
algorithm to facet curved walls is to update their footprints by seg-
menting all arc edges into sets of line segments. By embedding the
footprint standardization method, the algorithm is able to process walls
with various footprint representation forms that mainly result from
linear approximations of arc footprint boundaries. The proposed ray-
based footprint segmentation method enables the algorithm to produce
faceted walls that satisfy the three output requirements, namely: (1) the
result geometries shall be polyhedrons; (2) the result geometries shall
be able to be further processed to generate thermal SBs; and (3) geo-
metry-related thermal features of original curved shapes shall be
maintained as much as possible. Another important feature of the
segmentation method is that the connections between a curved wall and
its adjacent walls are also considered. This ensures the correctness of
these connections in the faceting results.

In addition to faceting curved walls, this algorithm also provides
mechanisms to update the geometries of relevant building objects, in-
cluding straight walls connected to curved walls, openings on curved
walls, and spaces enclosed by curved walls, to fit with the faceted
geometries of relevant curved walls. This eliminates curved surfaces of
these objects and ensures correct geometric relationships between them
and corresponding faceted walls. Furthermore, this algorithm detects
and facets slabs with curved surfaces.

A prototype application implementing the proposed algorithm was
developed and applied to a simple building model and a complex real-
world building model. The evaluation results demonstrate that the al-
gorithm performs as intended. This algorithm is thus expected to ex-
pand the efforts on the automatic information exchange from IFC BIM
to BEM by equipping the curved geometry processing ability.

Acknowledgments

The work described in this paper was supported by a grant from the
Seed Funding Programme for Basic Research of the University of Hong
Kong, Hong Kong (Project No. 201502159002). The authors would also
like to greatly thank the anonymous reviewers for their invaluable
comments on improving this manuscript.

References

[1] IEA, Transition to Sustainable Buildings: Strategies and Opportunities to 2050.
Available from: https://www.iea.org/publications/freepublications/publication/
Building2013_free.pdf (Last accessed: September 14, 2017).

UNEP, Why Buildings. Available from: http://staging.unep.org/sbci/AboutSBCI/
Background.asp (Last accessed: September 14, 2017).

EMSD, Hong Kong Energy End-use Data, Available from: http://www.emsd.gov.hk/
filemanager/en/content 762/HKEEUD2016.pdf, (2016) , Accessed date: 11
November 2016.

J. O'Donnell, T. Maile, C. Rose, N. Mrazovié, E. Morrissey, C. Regnier, et al.,
Transforming BIM to BEM: Generation of building geometry for the NASA Ames
Sustainability Base BIM, Lawrence Berkeley National Laboratory, Berkeley, CA,
2013. Available from: https://escholarship.org/uc/item/1x09b1xd (Last accessed:
June 6, 2018).

U.S. GSA, GSA BIM Guide 05 - Energy Performance. Available from: http://www.
gsa.gov/portal/content/102283 (Last accessed: November 12, 2016).

V. Bazjanac, Acquisition of Building Geometry in the Simulation of Energy
Performance, Lawrence Berkeley National Laboratory, Berkeley, CA, 2001
Available from: https://escholarship.org/uc/item/2k58j3k8 , Accessed date: 6
August 2018.

V. Bazjanac, IFC BIM-based Methodology for Semi-automated Building Energy
Performance Simulation, Lawrence Berkeley National Laboratory, Berkeley, CA,
2008 Available from https://escholarship.org/uc/item/0m8238pj , Accessed date:
6 August 2018.

NBIMS-US™, Frequently asked questions about the national BIM standard-United
States: What is a BIM? Available from: https://www.nationalbimstandard.org/
fags#faql (Last accessed: July 5, 2016).

D. Ladenhauf, K. Battistia, R. Berndtd, E. Eggeling, D.W. Fellner, M. Gratzl-
Michlmair, et al., Computational geometry in the context of building information

[2]

[3]

[4]

[5]

[6]

[7]

[8

[9

https://www.iea.org/publications/freepublications/publication/Building2013_free.pdf
https://www.iea.org/publications/freepublications/publication/Building2013_free.pdf
http://staging.unep.org/sbci/AboutSBCI/Background.asp
http://staging.unep.org/sbci/AboutSBCI/Background.asp
http://www.emsd.gov.hk/filemanager/en/content_762/HKEEUD2016.pdf
http://www.emsd.gov.hk/filemanager/en/content_762/HKEEUD2016.pdf
https://escholarship.org/uc/item/1x09b1xd
http://www.gsa.gov/portal/content/102283
http://www.gsa.gov/portal/content/102283
https://escholarship.org/uc/item/2k58j3k8
https://escholarship.org/uc/item/0m8238pj
https://www.nationalbimstandard.org/faqs
https://www.nationalbimstandard.org/faqs

H. Ying and S. Lee

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

modeling, Energy and Buildings 115 (2016) 78-84, https://doi.org/10.1016/j.
enbuild.2015.02.056.

G.N. Lilis, G.I. Giannakis, D.V. Rovas, Automatic generation of second-level space
boundary topology from IFC geometry inputs, Autom. Constr. 76 (2017) 108-124,
https://doi.org/10.1016/j.autcon.2016.08.044.

C.M. Rose, V. Bazjanac, An algorithm to generate space boundaries for building
energy simulation, Eng. Comput. 31 (2015) 271-280, https://doi.org/10.1007/
s00366-013-0347-5.

A. Farzaneh, J. Carriere, D. Forgues, D. Monfet, Framework for using building in-
formation modeling to create a building energy model, J. Archit. Eng. 24 (2) (2018)
05018001, , https://doi.org/10.1061/(ASCE)AE.1943-5568.0000306.

R.J. Hitchcock, J. Wong, Transforming IFC Architectural View BIMs for Energy
Simulation: 2011, 12th Conference of International Building Performance
Simulation Association, Sydney, Australia, 2011, pp. 1089-1095. Available from:
http://ibpsa.org/proceedings/BS2011/P_1391.pdf , Accessed date: 25 January
2019.

G. Gourlis, I. Kovacic, Building information modelling for analysis of energy effi-
cient industrial buildings - a case study, Renew. Sust. Energ. Rev. 68 (2017)
953-963, https://doi.org/10.1016/j.rser.2016.02.009.

buildingSMART, Technical Vision. Available from: https://www.buildingsmart.
org/standards/technical-vision/ (Last accessed: November 12, 2016).

V. Bazjanac, Space boundary requirements for modeling of building geometry for
energy and other performance simulation, 27th CIB W78 International Conference,
Cairo, Egypt, 2010, pp. 16-18. Available from: http://www.e3lab.org/upl/website/
publication11111/spaceboundary.pdf (Last accessed: January 25, 2019).

Digital Alchemy, Simergy™. Available from: https://d-alchemy.com/products/
simergy (Last accessed: August 1, 2018).

A. Andriamamonjy, D. Saelens, R. Klein, An automated IFC-based workflow for
building energy performance simulation with Modelica, Autom. Constr. 91 (2018)
166-181, https://doi.org/10.1016/j.autcon.2018.03.019.

H. Kim, K. Anderson, Energy modeling system using building information modeling
open standards, J. Comput. Civ. Eng. 27 (3) (2012) 203-211, https://doi.org/10.
1061/(ASCE)CP.1943-5487.0000215.

K.U. Ahn, Y.J. Kim, C.S. Park, I. Kim, K. Lee, BIM interface for full vs. semi-auto-
mated building energy simulation, Energy and Buildings 68 (2014) 671-678,
https://doi.org/10.1016/j.enbuild.2013.08.063.

J. Choi, J. Shin, M. Kim, I. Kim, Development of openBIM-based energy analysis
software to improve the interoperability of energy performance assessment, Autom.
Constr. 72 (2016) 52-64, https://doi.org/10.1016/j.autcon.2016.07.004.

T. El-Diraby, T. Krijnen, M. Papagelis, BIM-based collaborative design and socio-
technical analytics of green buildings, Autom. Constr. 82 (2017) 59-74, https://doi.
org/10.1016/j.autcon.2017.06.004.

N. Yu, Y. Jiang, L. Luo, S. Lee, A. Jallow, D. Wu, et al., Integrating BIMserver and
OpenStudio for energy efficient building, 2013 ASCE International Workshop on
Computing in Civil Engineering, Los Angeles, California, USA, 2013, pp. 516-523,
doi:https://doi.org/10.1061/9780784413029.065.

S. Pinheiro, R. Wimmer, J. O'Donnell, S. Muhic, V. Bazjanac, T. Maile, et al., MVD
based information exchange between BIM and building energy performance simu-
lation, Autom. Constr. 90 (2018) 91-103, doi:https://doi.org/10.1016/j.autcon.
2018.02.009.

Autodesk, Export a Project to IFC. Available from: https://knowledge.autodesk.
com/support/revit-products/learn-explore/caas/CloudHelp/cloudhelp/2015/
ENU/Revit-DocumentPresent/files/GUID-14037C31-EBAD-41A8-9099-
E6DD65BB626E-htm.html (Last accessed: November 13, 2016).

103

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Automation in Construction 103 (2019) 80-103

Graphisoft, Help Center: Working With IFC. Available from: http://helpcenter.
graphisoft.com/guides/archicad-18/archicad-18-int-reference-guide/
interoperability/file-handling-and-exchange/working-with-ifc/model-view-
definitions/ (Last accessed: October 10, 2016).

H. Ying, S. Lee, A framework for rule-based validation of IFC space boundaries for
building energy analysis, 2017 ASCE International Workshop on Computing in Civil
Engineering, Seattle, WA, USA, 2017, pp. 110-117, doi:https://doi.org/10.1061/
9780784480823.014.

T. Maile, J. O'Donnell, V. Bazjanac, C. Rose, BIM-geometry Modelling Guidelines for
Building Energy Performance Simulation, 13th Conference of International Building
Performance Simulation Association, Chambéry, France, 2013, pp. 3242-3249.
Available from: http://www.ibpsa.org/proceedings/BS2013/p_1510.pdf , Accessed
date: 25 January 2019.

SBT-IFC SPACE BOUNDARY TOOL. Available from: https://gaia.lbl.gov/
interoperability/SBT/ (Last accessed: April 4, 2017).

OpenStudio, Import IFC. Available from: http://nrel.github.io/OpenStudio-user-
documentation/tutorials/tutorial_ifcimport/(Last accessed: August 1, 2018).

C. van Treeck, E. Rank, Dimensional reduction of 3D building models using graph
theory and its application in building energy simulation, Eng. Comput. 23 (2)
(2007) 109-122, https://doi.org/10.1007/s00366-006-0053-7.

K. Kim, J. Yu, A process to divide curved walls in IFC-BIM into segmented straight
walls for building energy analysis, J. Civ. Eng. Manag. 22 (3) (2016) 333-345,
https://doi.org/10.3846,/13923730.2014.897975.

buildingSMART, IfcWall. Available from: http://www.buildingsmart-tech.org/ifc/
IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcwall.htm (Last accessed:
August 1, 2018).

buildingSMART, IfcWallStandardCase. Available from: http://www.buildingsmart-
tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/
ifcwallstandardcase.htm (Last accessed: August 1, 2018).

buildingSMART, Start Page of IFC2x3 Final Documentation:
IfcShapeRepresentation. Available from: http://www.buildingsmart-tech.org/ifc/
IFC2x3/TC1/html/ (Last accessed: November 12, 2016).

Blis-Project, Concept Design BIM 2010 - IFC 2X3 Binding Concepts Model.
Available from: http://www.blis-project.org/IAI-MVD/reporting/browseMVD.php?
MVD = GSA-005&BND =IFC2x3&LAYOUT =H (Last accessed: December 1, 2017).
M. Weise, T. Liebich, R. See, V. Bazjanac, T. Laine, Implementation Guide: Space
Boundaries for Energy Analysis. Available from: http://www.buildingsmart-tech.
org/downloads/accompanying-documents/agreements/ (Last accessed: October
10, 2016).

RDF, IFC Engine DLL. Available from: http://rdf.bg/ifc-engine-dll.php (Last ac-
cessed: December 1, 2017).

P.J. Frey, P-L George, Mesh Generation: Application to Finite Elements, ISTE,
London, UK, 2010, doi:https://doi.org/10.1002/9780470611166. ISBN
9781848210295.

B. Sarkar, L.K. Singh, D. Sarkar, Approximation of digital curves with line segments
and circular arcs using genetic algorithms, Pattern Recogn. Lett. 24 (15) (2003)
2585-2595, https://doi.org/10.1016/50167-8655(03)00103-X.

J.H. Horng, An adaptive smoothing approach for fitting digital planar curves with
line segments and circular arcs, Pattern Recogn. Lett. 24 (1-3) (2003) 565-577,
https://doi.org/10.1016/50167-8655(02)00277-5.

F. Tortorella, R. Patraccone, M. Molinara, A Dynamic Programming Approach for
Segmenting Digital Planar Curves Into Line Segments and Circular Arcs, 19th
International Conference on Pattern Recognition, Florida, USA, 2008, pp. 1-4,
https://doi.org/10.1109/ICPR.2008.4761177.

https://doi.org/10.1016/j.enbuild.2015.02.056
https://doi.org/10.1016/j.enbuild.2015.02.056
https://doi.org/10.1016/j.autcon.2016.08.044
https://doi.org/10.1007/s00366-013-0347-5
https://doi.org/10.1007/s00366-013-0347-5
https://doi.org/10.1061/(ASCE)AE.1943-5568.0000306
http://ibpsa.org/proceedings/BS2011/P_1391.pdf
https://doi.org/10.1016/j.rser.2016.02.009
https://www.buildingsmart.org/standards/technical-vision/
https://www.buildingsmart.org/standards/technical-vision/
http://www.e3lab.org/upl/website/publication11111/spaceboundary.pdf
http://www.e3lab.org/upl/website/publication11111/spaceboundary.pdf
https://d-alchemy.com/products/simergy
https://d-alchemy.com/products/simergy
https://doi.org/10.1016/j.autcon.2018.03.019
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000215
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000215
https://doi.org/10.1016/j.enbuild.2013.08.063
https://doi.org/10.1016/j.autcon.2016.07.004
https://doi.org/10.1016/j.autcon.2017.06.004
https://doi.org/10.1016/j.autcon.2017.06.004
https://doi.org/10.1061/9780784413029.065
https://doi.org/10.1016/j.autcon.2018.02.009
https://doi.org/10.1016/j.autcon.2018.02.009
http://helpcenter.graphisoft.com/guides/archicad-18/archicad-18-int-reference-guide/interoperability/file-handling-and-exchange/working-with-ifc/model-view-definitions/
http://helpcenter.graphisoft.com/guides/archicad-18/archicad-18-int-reference-guide/interoperability/file-handling-and-exchange/working-with-ifc/model-view-definitions/
http://helpcenter.graphisoft.com/guides/archicad-18/archicad-18-int-reference-guide/interoperability/file-handling-and-exchange/working-with-ifc/model-view-definitions/
http://helpcenter.graphisoft.com/guides/archicad-18/archicad-18-int-reference-guide/interoperability/file-handling-and-exchange/working-with-ifc/model-view-definitions/
https://doi.org/10.1061/9780784480823.014
https://doi.org/10.1061/9780784480823.014
http://www.ibpsa.org/proceedings/BS2013/p_1510.pdf
https://gaia.lbl.gov/interoperability/SBT/
https://gaia.lbl.gov/interoperability/SBT/
http://nrel.github.io/OpenStudio-user-documentation/tutorials/tutorial_ifcimport/
http://nrel.github.io/OpenStudio-user-documentation/tutorials/tutorial_ifcimport/
https://doi.org/10.1007/s00366-006-0053-7
https://doi.org/10.3846/13923730.2014.897975
http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcwall.htm
http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcwall.htm
http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcwallstandardcase.htm
http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcwallstandardcase.htm
http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/ifcsharedbldgelements/lexical/ifcwallstandardcase.htm
http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/
http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/
http://www.blis-project.org/IAI-MVD/reporting/browseMVD.php?MVD=GSA-005&BND=IFC2x3&LAYOUT=H
http://www.blis-project.org/IAI-MVD/reporting/browseMVD.php?MVD=GSA-005&BND=IFC2x3&LAYOUT=H
http://www.buildingsmart-tech.org/downloads/accompanying-documents/agreements/
http://www.buildingsmart-tech.org/downloads/accompanying-documents/agreements/
http://rdf.bg/ifc-engine-dll.php
https://doi.org/10.1002/9780470611166
https://doi.org/10.1016/S0167-8655(03)00103-X
https://doi.org/10.1016/S0167-8655(02)00277-5
https://doi.org/10.1109/ICPR.2008.4761177

	An algorithm to facet curved walls in IFC BIM for building energy analysis
	Introduction
	Background
	Research aim

	Research scope
	Algorithm requirements
	Input requirements
	Output requirements

	The proposed algorithm
	Overview of the algorithm
	Extracting footprints of walls
	Standardizing footprints and identifying curved walls
	Multifarious representations of footprints
	Footprint standardization
	Curved wall identification

	Faceting curved walls
	Detecting connections
	Dividing arc edges
	Segmenting arc edges
	Updating the footprint

	Updating geometries of relevant building objects
	Updating geometries of straight walls with curved surfaces
	Updating geometries of openings on curved walls
	Updating geometries of spaces enclosed by curved walls
	Updating geometries of slabs with curved surfaces

	Removing original SBs

	Algorithm implementation and validation
	Algorithm implementation
	Algorithm validation

	Limitations and future work
	Conclusions
	Acknowledgments
	References

